Normalized defining polynomial
\( x^{20} - 8 x^{19} + 24 x^{18} - 36 x^{17} + 23 x^{16} + 86 x^{15} - 278 x^{14} + 87 x^{13} + 286 x^{12} + 72 x^{11} + 43 x^{10} - 395 x^{9} - 349 x^{8} - 200 x^{7} + 363 x^{6} + 534 x^{5} + 625 x^{4} + 377 x^{3} + 171 x^{2} + 32 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62402607650205857900390625=3^{10}\cdot 5^{10}\cdot 641^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{3}{13} a^{16} - \frac{5}{13} a^{15} - \frac{3}{13} a^{14} + \frac{4}{13} a^{13} + \frac{3}{13} a^{12} - \frac{3}{13} a^{11} + \frac{3}{13} a^{10} + \frac{1}{13} a^{9} - \frac{1}{13} a^{7} + \frac{6}{13} a^{6} - \frac{6}{13} a^{5} - \frac{5}{13} a^{4} - \frac{2}{13} a^{3} + \frac{4}{13} a^{2} - \frac{5}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{18} - \frac{1}{13} a^{16} - \frac{5}{13} a^{15} - \frac{5}{13} a^{14} + \frac{2}{13} a^{13} + \frac{6}{13} a^{12} - \frac{6}{13} a^{11} - \frac{3}{13} a^{10} + \frac{3}{13} a^{9} - \frac{1}{13} a^{8} + \frac{3}{13} a^{7} - \frac{1}{13} a^{6} + \frac{3}{13} a^{5} - \frac{4}{13} a^{4} - \frac{2}{13} a^{3} - \frac{6}{13} a^{2} + \frac{2}{13} a - \frac{1}{13}$, $\frac{1}{13053949258745568264989729} a^{19} + \frac{78614445481161157170505}{13053949258745568264989729} a^{18} - \frac{195156046043531968305562}{13053949258745568264989729} a^{17} - \frac{5498541470318575813452547}{13053949258745568264989729} a^{16} - \frac{4714920086404153730841507}{13053949258745568264989729} a^{15} + \frac{4493247820600729681434906}{13053949258745568264989729} a^{14} - \frac{5974529459815559239461357}{13053949258745568264989729} a^{13} - \frac{5437494299599266345660400}{13053949258745568264989729} a^{12} + \frac{2360739530836888643452923}{13053949258745568264989729} a^{11} + \frac{2123925931148065435915974}{13053949258745568264989729} a^{10} - \frac{4760885937381452753438509}{13053949258745568264989729} a^{9} + \frac{6007041397162563930662357}{13053949258745568264989729} a^{8} - \frac{5203941549841346738810184}{13053949258745568264989729} a^{7} - \frac{4715314090419597959638041}{13053949258745568264989729} a^{6} - \frac{6508265907630874699202585}{13053949258745568264989729} a^{5} - \frac{2499666923307742410300944}{13053949258745568264989729} a^{4} + \frac{6028196131273063874865632}{13053949258745568264989729} a^{3} + \frac{4331475707201389739844567}{13053949258745568264989729} a^{2} - \frac{3853513996681294023800485}{13053949258745568264989729} a - \frac{5855499821856660420967714}{13053949258745568264989729}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 83555.0948812 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.144225.1, 10.2.1284003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 641 | Data not computed | ||||||