Normalized defining polynomial
\( x^{20} - 10 x^{19} + 58 x^{18} - 178 x^{17} + 250 x^{16} + 426 x^{15} - 2472 x^{14} + 3734 x^{13} + 2912 x^{12} - 17860 x^{11} + 8920 x^{10} + 69404 x^{9} - 154021 x^{8} - 2374 x^{7} + 416040 x^{6} - 179144 x^{5} - 1685496 x^{4} + 4189308 x^{3} - 4970590 x^{2} + 3135134 x - 807593 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6137624919604778598575554238087168=2^{30}\cdot 89417^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{741469692061101343221220005875628969286014077592037241548583} a^{19} + \frac{166813528612949993473670220967369865449471329053299609171792}{741469692061101343221220005875628969286014077592037241548583} a^{18} + \frac{107744522684371639108586981403903208611102417359262844483162}{741469692061101343221220005875628969286014077592037241548583} a^{17} - \frac{34429757634374855725620945914927450379378642176643956505338}{741469692061101343221220005875628969286014077592037241548583} a^{16} + \frac{98123830038999156781754169314740007905625102205856724186530}{741469692061101343221220005875628969286014077592037241548583} a^{15} + \frac{218588797033032292384290452504075510491831820370882180957028}{741469692061101343221220005875628969286014077592037241548583} a^{14} + \frac{324021514066335880158418427401674254223542445034669781940037}{741469692061101343221220005875628969286014077592037241548583} a^{13} - \frac{26802295510127778360481867452251620024314527989671512756254}{741469692061101343221220005875628969286014077592037241548583} a^{12} + \frac{316948451520555210145737433553330723956888490418744222146692}{741469692061101343221220005875628969286014077592037241548583} a^{11} + \frac{177765559267869662417253588194730091413503464856515328350788}{741469692061101343221220005875628969286014077592037241548583} a^{10} - \frac{49240324991507894751945848067789868904622623976724158481270}{741469692061101343221220005875628969286014077592037241548583} a^{9} - \frac{3542691563708805393418746000986119541610723704142498582437}{741469692061101343221220005875628969286014077592037241548583} a^{8} + \frac{366560764383535255634842224537868232661889839275117248694640}{741469692061101343221220005875628969286014077592037241548583} a^{7} + \frac{54602800049717981953801811358473181054899257422916337667509}{741469692061101343221220005875628969286014077592037241548583} a^{6} - \frac{307501817280029900631188214610425936217293494867146847642618}{741469692061101343221220005875628969286014077592037241548583} a^{5} - \frac{339728346066806709196380628471457450934540000077091429738771}{741469692061101343221220005875628969286014077592037241548583} a^{4} + \frac{23535981988029436881048939938544168544959323562028004277980}{741469692061101343221220005875628969286014077592037241548583} a^{3} + \frac{61260991688098813049102470606556863335380081522291069746432}{741469692061101343221220005875628969286014077592037241548583} a^{2} - \frac{329154764814941790336410271076427380051391446217802829403217}{741469692061101343221220005875628969286014077592037241548583} a + \frac{52417956136053832444448118780930997454279060178693794475026}{741469692061101343221220005875628969286014077592037241548583}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1061773521.13 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.8187289486336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89417 | Data not computed | ||||||