Normalized defining polynomial
\( x^{20} - 4 x^{19} + 54 x^{18} - 124 x^{17} + 1221 x^{16} - 1196 x^{15} + 7116 x^{14} + 1724 x^{13} - 50715 x^{12} + 110152 x^{11} - 180762 x^{10} - 274808 x^{9} + 766294 x^{8} - 4918480 x^{7} - 4021410 x^{6} + 25190444 x^{5} + 11339568 x^{4} + 23998572 x^{3} - 67507864 x^{2} - 68625992 x + 3959762 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(612576255759573370734751264818904170496=2^{48}\cdot 31^{10}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{300476283061578437495976186211179999393019435583366152836919512434635617122943649772} a^{19} + \frac{16871071251512066225780877857825863330860443897202426483224629171119940456674444579}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{18} + \frac{19165523025555164529460231952391907654752364176853573049257588220773996316115636883}{300476283061578437495976186211179999393019435583366152836919512434635617122943649772} a^{17} - \frac{70824644936353160677461913752133581791218770040306394665220490270467075773002733473}{300476283061578437495976186211179999393019435583366152836919512434635617122943649772} a^{16} + \frac{31297300993113511303463094675297465799007276683184561513048071242534720112300985293}{300476283061578437495976186211179999393019435583366152836919512434635617122943649772} a^{15} + \frac{59639095491101205550508760199243033753834637076090470461231938940285841704013859603}{300476283061578437495976186211179999393019435583366152836919512434635617122943649772} a^{14} - \frac{17269363737843734845014123354370347152260153665271704203102099630371594660301576705}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{13} + \frac{111047630277221029165132981787055841767889135694137702257216967439323918228625250479}{300476283061578437495976186211179999393019435583366152836919512434635617122943649772} a^{12} + \frac{47740522167981813630783523244238126467834096622146876923482475758789798048646396313}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{11} + \frac{30461050737478016195325826305659383621727711190940215321304850796392242986334824897}{75119070765394609373994046552794999848254858895841538209229878108658904280735912443} a^{10} + \frac{905379644950011655685992284752409476022117713675313777186787434869444792295823691}{75119070765394609373994046552794999848254858895841538209229878108658904280735912443} a^{9} - \frac{64110403895748092203227084396287386224600194284839535992169279976492563968596494887}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{8} + \frac{27913370438041798275951660680226789006618348331308067741004689971228137017212123697}{75119070765394609373994046552794999848254858895841538209229878108658904280735912443} a^{7} + \frac{26951323686840083348718637714199502843104238677986700692879530232646155659797031050}{75119070765394609373994046552794999848254858895841538209229878108658904280735912443} a^{6} + \frac{19924412085156180463789239550589799382393229238878337338791797497965247745999848475}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{5} - \frac{1892640436323381689502626051234757510296261695651079672927535132520933224911930973}{75119070765394609373994046552794999848254858895841538209229878108658904280735912443} a^{4} - \frac{36781567306589780756469681577508463003471423779498923353942415159319308800148316643}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{3} + \frac{37532488090537595264322187173180371335350352814763112997078893559783104414095628183}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886} a^{2} - \frac{24306140733449728566399164889973968938211178601330434361900491189649413000198181566}{75119070765394609373994046552794999848254858895841538209229878108658904280735912443} a - \frac{24264364917410867770473508275019224341780786056030239787833355264148797241278296329}{150238141530789218747988093105589999696509717791683076418459756217317808561471824886}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268414133640 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 31.10.5.1 | $x^{10} - 1922 x^{6} + 923521 x^{2} - 2862915100$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 227 | Data not computed | ||||||