Properties

Label 20.4.61131937356...6256.9
Degree $20$
Signature $[4, 8]$
Discriminant $2^{40}\cdot 11^{18}$
Root discriminant $34.62$
Ramified primes $2, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T331

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![529, 0, -412, 0, -1251, 0, 282, 0, 625, 0, -56, 0, -72, 0, -14, 0, -7, 0, 2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 2*x^18 - 7*x^16 - 14*x^14 - 72*x^12 - 56*x^10 + 625*x^8 + 282*x^6 - 1251*x^4 - 412*x^2 + 529)
 
gp: K = bnfinit(x^20 + 2*x^18 - 7*x^16 - 14*x^14 - 72*x^12 - 56*x^10 + 625*x^8 + 282*x^6 - 1251*x^4 - 412*x^2 + 529, 1)
 

Normalized defining polynomial

\( x^{20} + 2 x^{18} - 7 x^{16} - 14 x^{14} - 72 x^{12} - 56 x^{10} + 625 x^{8} + 282 x^{6} - 1251 x^{4} - 412 x^{2} + 529 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6113193735657808322804901216256=2^{40}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7394758949953} a^{18} + \frac{2125479942412}{7394758949953} a^{16} + \frac{2535166171404}{7394758949953} a^{14} - \frac{2399407827890}{7394758949953} a^{12} + \frac{3652808605424}{7394758949953} a^{10} + \frac{1562768051679}{7394758949953} a^{8} + \frac{1755933828180}{7394758949953} a^{6} - \frac{393091100864}{7394758949953} a^{4} + \frac{1502129739110}{7394758949953} a^{2} - \frac{875803559766}{7394758949953}$, $\frac{1}{170079455848919} a^{19} + \frac{61283551542036}{170079455848919} a^{17} + \frac{83877514620887}{170079455848919} a^{15} + \frac{56758663771734}{170079455848919} a^{13} + \frac{48021362305142}{170079455848919} a^{11} + \frac{38536562801444}{170079455848919} a^{9} + \frac{60914005427804}{170079455848919} a^{7} - \frac{59551162700488}{170079455848919} a^{5} + \frac{45870683438828}{170079455848919} a^{3} + \frac{73071785939764}{170079455848919} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 30192727.9351 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T331:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 56 conjugacy class representatives for t20n331 are not computed
Character table for t20n331 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.2414538435584.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
11Data not computed