Normalized defining polynomial
\( x^{20} - 10 x^{19} + 54 x^{18} - 173 x^{17} + 372 x^{16} - 564 x^{15} + 576 x^{14} - 589 x^{13} + 486 x^{12} - 326 x^{11} + 1828 x^{10} - 2917 x^{9} - 2730 x^{8} - 2860 x^{7} + 9332 x^{6} + 21581 x^{5} + 12684 x^{4} - 2140 x^{3} - 13884 x^{2} - 9209 x - 3659 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60656583790251750925293253033984=2^{24}\cdot 83^{5}\cdot 983^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{61} a^{18} + \frac{20}{61} a^{17} + \frac{26}{61} a^{16} + \frac{3}{61} a^{15} - \frac{6}{61} a^{14} - \frac{5}{61} a^{13} - \frac{15}{61} a^{12} + \frac{27}{61} a^{11} - \frac{20}{61} a^{10} - \frac{9}{61} a^{9} + \frac{27}{61} a^{8} + \frac{7}{61} a^{7} - \frac{17}{61} a^{6} - \frac{19}{61} a^{5} - \frac{21}{61} a^{4} + \frac{4}{61} a^{3} + \frac{6}{61} a^{2} - \frac{19}{61} a + \frac{17}{61}$, $\frac{1}{320563569482627487715041752489835937683476057} a^{19} - \frac{512137913426840625530232782420145601494191}{320563569482627487715041752489835937683476057} a^{18} + \frac{9083984500091978737237009871977612109854206}{320563569482627487715041752489835937683476057} a^{17} - \frac{160199067000762443581315370955014855039329723}{320563569482627487715041752489835937683476057} a^{16} - \frac{70007670279690480706238279465470057119651311}{320563569482627487715041752489835937683476057} a^{15} + \frac{90260571462935816274149586078039053974842629}{320563569482627487715041752489835937683476057} a^{14} - \frac{13180370878442181260245149119496315314866892}{320563569482627487715041752489835937683476057} a^{13} + \frac{59858692510373320361050628642305415114664391}{320563569482627487715041752489835937683476057} a^{12} - \frac{83901001102794827309324090185359529549743643}{320563569482627487715041752489835937683476057} a^{11} + \frac{89615282751343354206879621373016396110817116}{320563569482627487715041752489835937683476057} a^{10} + \frac{24212966921038391235360406685937010361664855}{320563569482627487715041752489835937683476057} a^{9} - \frac{70991675538980566149948585801573084526547738}{320563569482627487715041752489835937683476057} a^{8} - \frac{150705203968616258955858799546847515552430131}{320563569482627487715041752489835937683476057} a^{7} + \frac{114395006861107885782153024660049599003889276}{320563569482627487715041752489835937683476057} a^{6} + \frac{128390453378263140901944806585903088258490896}{320563569482627487715041752489835937683476057} a^{5} + \frac{45931823234340346494528976165703635503949774}{320563569482627487715041752489835937683476057} a^{4} - \frac{51482076602083849738560877946505278340846273}{320563569482627487715041752489835937683476057} a^{3} - \frac{32601813661445534647997521673835879903556195}{320563569482627487715041752489835937683476057} a^{2} - \frac{18803805679679423753329671278379002339783978}{320563569482627487715041752489835937683476057} a + \frac{29199537798099451724463345003285125757054025}{320563569482627487715041752489835937683476057}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32532043.1582 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||