Normalized defining polynomial
\( x^{20} - 5 x^{19} + 3 x^{18} + 105 x^{17} - 46 x^{16} - 590 x^{15} + 4988 x^{14} + 515 x^{13} - 6615 x^{12} + 21964 x^{11} + 5969 x^{10} + 156325 x^{9} - 2130133 x^{8} + 3555590 x^{7} - 14109793 x^{6} + 21121843 x^{5} - 57181560 x^{4} + 119955788 x^{3} - 62037064 x^{2} + 199399280 x - 222407968 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(599022102118389088243636118689873050397=13^{13}\cdot 97^{2}\cdot 347^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{3}{8} a^{15} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{3}{8} a^{11} - \frac{3}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{19} - \frac{21717618927892908141604285097983141684975397708153637568136882075131507548260147}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{18} + \frac{56512524162138594332709696061056618740588527214121573447632695210976571535361949}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{17} + \frac{107949367743222117856047000139527205111385035191764348098007424457486049959853763}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{16} + \frac{9287666566124055067047525354771357427026288243504816633646257590999588369425641}{105126211545874464887941153317950709708783006616294350950671126096601123402086486} a^{15} - \frac{2108808626311683063216639814966045254512035054707963511048631866140782634227783}{420504846183497859551764613271802838835132026465177403802684504386404493608345944} a^{14} - \frac{14626012022520863037831354973679540076364875549484166342668143461716858118068013}{52563105772937232443970576658975354854391503308147175475335563048300561701043243} a^{13} + \frac{239233647194677853191253209642194224953206999114123880685903364108593450376543363}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{12} - \frac{408477755754110615892849626894241499239883079132241220931031925685716405272342177}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{11} - \frac{196350754993972943922631497643551907788477803274946735265058076687177595895280091}{420504846183497859551764613271802838835132026465177403802684504386404493608345944} a^{10} + \frac{309276701223279517988715986876952433701379343666172576262810655994042405949150021}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{9} + \frac{399437588313530760280797678100740912081989158009087542714548236975728682562705055}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{8} - \frac{97252118864807131081280185091651445418568466538081387819201372298945171366151191}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{7} - \frac{4188942440271038224378402052964675432272247596062890780465561009939973271217945}{105126211545874464887941153317950709708783006616294350950671126096601123402086486} a^{6} + \frac{312462600242052306670407672987395846177123985166043340345520035434918844685317583}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{5} + \frac{88484345966546744966897074355329404786911073497996800386818233052396848835414401}{841009692366995719103529226543605677670264052930354807605369008772808987216691888} a^{4} - \frac{112750260600980305581869748473425878919335837169529987060406094019393873779680723}{420504846183497859551764613271802838835132026465177403802684504386404493608345944} a^{3} - \frac{13405175203278813910174735808735470956158813668996369483686826091777838761505222}{52563105772937232443970576658975354854391503308147175475335563048300561701043243} a^{2} - \frac{19481315436570051158972386621901969639373848363468584406517045070590841062749417}{105126211545874464887941153317950709708783006616294350950671126096601123402086486} a - \frac{23652579993623275729926329051496449184927718765939827488626592231061066823524666}{52563105772937232443970576658975354854391503308147175475335563048300561701043243}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21641867946.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.3.4511.1, 10.4.15513335536439.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||