Properties

Label 20.4.59851236840...5625.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{10}\cdot 71^{6}\cdot 263^{4}$
Root discriminant $24.48$
Ramified primes $5, 71, 263$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1013

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, 15, 155, 232, 1, -45, -172, -680, -255, 455, 385, 165, -79, -99, -2, 13, 7, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 4*x^18 + 7*x^17 + 13*x^16 - 2*x^15 - 99*x^14 - 79*x^13 + 165*x^12 + 385*x^11 + 455*x^10 - 255*x^9 - 680*x^8 - 172*x^7 - 45*x^6 + x^5 + 232*x^4 + 155*x^3 + 15*x^2 - 3*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 4*x^18 + 7*x^17 + 13*x^16 - 2*x^15 - 99*x^14 - 79*x^13 + 165*x^12 + 385*x^11 + 455*x^10 - 255*x^9 - 680*x^8 - 172*x^7 - 45*x^6 + x^5 + 232*x^4 + 155*x^3 + 15*x^2 - 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 4 x^{18} + 7 x^{17} + 13 x^{16} - 2 x^{15} - 99 x^{14} - 79 x^{13} + 165 x^{12} + 385 x^{11} + 455 x^{10} - 255 x^{9} - 680 x^{8} - 172 x^{7} - 45 x^{6} + x^{5} + 232 x^{4} + 155 x^{3} + 15 x^{2} - 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5985123684000933883603515625=5^{10}\cdot 71^{6}\cdot 263^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 71, 263$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{578254154220035139776689} a^{19} - \frac{253441300972699584061749}{578254154220035139776689} a^{18} - \frac{217001474696120364584387}{578254154220035139776689} a^{17} + \frac{97337376069195304414869}{578254154220035139776689} a^{16} - \frac{627730886499206686877}{578254154220035139776689} a^{15} + \frac{257377774124749863806103}{578254154220035139776689} a^{14} - \frac{39881485320702598955692}{578254154220035139776689} a^{13} - \frac{246495798057176558968980}{578254154220035139776689} a^{12} + \frac{76276117400661555617268}{578254154220035139776689} a^{11} - \frac{247833382772620515930479}{578254154220035139776689} a^{10} - \frac{168268197576030916094707}{578254154220035139776689} a^{9} - \frac{135742078346424573918458}{578254154220035139776689} a^{8} - \frac{161656892143008339303604}{578254154220035139776689} a^{7} - \frac{26744348358406256360690}{578254154220035139776689} a^{6} - \frac{271171136366281595887127}{578254154220035139776689} a^{5} + \frac{275161236015413352745965}{578254154220035139776689} a^{4} + \frac{154171436242888492398746}{578254154220035139776689} a^{3} - \frac{89321560420777847795190}{578254154220035139776689} a^{2} + \frac{155364951160778745718017}{578254154220035139776689} a - \frac{158614326728826559320041}{578254154220035139776689}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 758533.835022 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1013:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3686400
The 114 conjugacy class representatives for t20n1013 are not computed
Character table for t20n1013 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.1089627903125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
71Data not computed
263Data not computed