Properties

Label 20.4.59699157574...1344.4
Degree $20$
Signature $[4, 8]$
Discriminant $2^{30}\cdot 11^{18}$
Root discriminant $24.48$
Ramified primes $2, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_2^4:C_5$ (as 20T46)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 84, 70, -4082, 11693, -12880, 7168, -4066, 3640, -3806, 1970, -1188, 615, -348, 194, -98, 55, -12, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 4*x^18 - 12*x^17 + 55*x^16 - 98*x^15 + 194*x^14 - 348*x^13 + 615*x^12 - 1188*x^11 + 1970*x^10 - 3806*x^9 + 3640*x^8 - 4066*x^7 + 7168*x^6 - 12880*x^5 + 11693*x^4 - 4082*x^3 + 70*x^2 + 84*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^19 + 4*x^18 - 12*x^17 + 55*x^16 - 98*x^15 + 194*x^14 - 348*x^13 + 615*x^12 - 1188*x^11 + 1970*x^10 - 3806*x^9 + 3640*x^8 - 4066*x^7 + 7168*x^6 - 12880*x^5 + 11693*x^4 - 4082*x^3 + 70*x^2 + 84*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 4 x^{18} - 12 x^{17} + 55 x^{16} - 98 x^{15} + 194 x^{14} - 348 x^{13} + 615 x^{12} - 1188 x^{11} + 1970 x^{10} - 3806 x^{9} + 3640 x^{8} - 4066 x^{7} + 7168 x^{6} - 12880 x^{5} + 11693 x^{4} - 4082 x^{3} + 70 x^{2} + 84 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5969915757478328440239161344=2^{30}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6962752769028589082674710482473951639} a^{19} - \frac{633299696217553160985820047035250017}{6962752769028589082674710482473951639} a^{18} + \frac{2186707637641797311980248638153158171}{6962752769028589082674710482473951639} a^{17} - \frac{841121900165807412502359231827313522}{6962752769028589082674710482473951639} a^{16} + \frac{342980618625530536413568394511004011}{6962752769028589082674710482473951639} a^{15} + \frac{572614298010121590134823617373603200}{6962752769028589082674710482473951639} a^{14} - \frac{3436236637124549683482769029008993580}{6962752769028589082674710482473951639} a^{13} + \frac{875857796147042382967577118310529751}{6962752769028589082674710482473951639} a^{12} - \frac{1419476925826206387270864288356380823}{6962752769028589082674710482473951639} a^{11} + \frac{22498683628474946113244430796402582}{6962752769028589082674710482473951639} a^{10} - \frac{841672971878138617992077493038430521}{6962752769028589082674710482473951639} a^{9} - \frac{2998838678859522667052716957099639201}{6962752769028589082674710482473951639} a^{8} + \frac{1786611585777620395436804395271762738}{6962752769028589082674710482473951639} a^{7} - \frac{2364325103068202063327398720724738523}{6962752769028589082674710482473951639} a^{6} + \frac{3131421128380120139521034295478021579}{6962752769028589082674710482473951639} a^{5} - \frac{2340853484723469556236298003773359600}{6962752769028589082674710482473951639} a^{4} - \frac{150343949508140616392733358590719636}{6962752769028589082674710482473951639} a^{3} + \frac{203440770154286209414741327134503695}{6962752769028589082674710482473951639} a^{2} + \frac{3325463855149896526763388190167403880}{6962752769028589082674710482473951639} a + \frac{2647311576530998225728400166199313770}{6962752769028589082674710482473951639}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1092701.97171 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^4:C_5$ (as 20T46):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$
Character table for $C_2\times C_2^4:C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.2414538435584.2, 10.6.2414538435584.1, 10.2.219503494144.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$