Properties

Label 20.4.59699157574...1344.2
Degree $20$
Signature $[4, 8]$
Discriminant $2^{30}\cdot 11^{18}$
Root discriminant $24.48$
Ramified primes $2, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_2^4:C_5$ (as 20T40)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![463, -4342, 16178, -31076, 28589, 5116, -52390, 78284, -68575, 39688, -14596, 2046, 1528, -1598, 960, -450, 187, -78, 30, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 30*x^18 - 78*x^17 + 187*x^16 - 450*x^15 + 960*x^14 - 1598*x^13 + 1528*x^12 + 2046*x^11 - 14596*x^10 + 39688*x^9 - 68575*x^8 + 78284*x^7 - 52390*x^6 + 5116*x^5 + 28589*x^4 - 31076*x^3 + 16178*x^2 - 4342*x + 463)
 
gp: K = bnfinit(x^20 - 8*x^19 + 30*x^18 - 78*x^17 + 187*x^16 - 450*x^15 + 960*x^14 - 1598*x^13 + 1528*x^12 + 2046*x^11 - 14596*x^10 + 39688*x^9 - 68575*x^8 + 78284*x^7 - 52390*x^6 + 5116*x^5 + 28589*x^4 - 31076*x^3 + 16178*x^2 - 4342*x + 463, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 30 x^{18} - 78 x^{17} + 187 x^{16} - 450 x^{15} + 960 x^{14} - 1598 x^{13} + 1528 x^{12} + 2046 x^{11} - 14596 x^{10} + 39688 x^{9} - 68575 x^{8} + 78284 x^{7} - 52390 x^{6} + 5116 x^{5} + 28589 x^{4} - 31076 x^{3} + 16178 x^{2} - 4342 x + 463 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5969915757478328440239161344=2^{30}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{4}{23} a^{17} + \frac{8}{23} a^{16} - \frac{9}{23} a^{15} + \frac{2}{23} a^{14} - \frac{3}{23} a^{13} + \frac{2}{23} a^{12} - \frac{7}{23} a^{11} - \frac{7}{23} a^{10} - \frac{9}{23} a^{9} - \frac{1}{23} a^{7} - \frac{1}{23} a^{6} + \frac{4}{23} a^{5} + \frac{7}{23} a^{4} - \frac{2}{23} a^{3} - \frac{8}{23} a^{2} - \frac{5}{23} a + \frac{3}{23}$, $\frac{1}{1258089252237537285587922621359} a^{19} + \frac{10640176820128844526364625173}{1258089252237537285587922621359} a^{18} - \frac{235736821709181947956006846368}{1258089252237537285587922621359} a^{17} + \frac{40659155567487552858813850529}{1258089252237537285587922621359} a^{16} + \frac{112271857974987360917515153123}{1258089252237537285587922621359} a^{15} + \frac{605729261486114260287133018480}{1258089252237537285587922621359} a^{14} - \frac{621812545409420541208434172011}{1258089252237537285587922621359} a^{13} - \frac{159099735431050982206330618665}{1258089252237537285587922621359} a^{12} + \frac{91357818298905782561129953191}{1258089252237537285587922621359} a^{11} + \frac{229738459995503829570392480341}{1258089252237537285587922621359} a^{10} - \frac{621394615452978009227878659314}{1258089252237537285587922621359} a^{9} + \frac{60514476299752878587480725175}{1258089252237537285587922621359} a^{8} - \frac{320624497608565514806457655634}{1258089252237537285587922621359} a^{7} - \frac{30141811078975228040991847419}{1258089252237537285587922621359} a^{6} + \frac{301724684200259636096239975658}{1258089252237537285587922621359} a^{5} - \frac{2103822547769792089010383447}{29257889586919471757858665613} a^{4} - \frac{188953667594352000346649719279}{1258089252237537285587922621359} a^{3} - \frac{301766093802887178861051395826}{1258089252237537285587922621359} a^{2} + \frac{566731914127090554244157519862}{1258089252237537285587922621359} a - \frac{162864183735393779476438588135}{1258089252237537285587922621359}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 894928.598953 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^4:C_5$ (as 20T40):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$
Character table for $C_2\times C_2^4:C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.2.2414538435584.1, 10.6.2414538435584.1, 10.6.219503494144.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$