Normalized defining polynomial
\( x^{20} - x^{19} + 3 x^{18} - 8 x^{17} + 16 x^{16} - 34 x^{15} + 39 x^{14} - 30 x^{13} - 3 x^{12} + 46 x^{11} - 57 x^{10} + 46 x^{9} - 3 x^{8} - 30 x^{7} + 39 x^{6} - 34 x^{5} + 16 x^{4} - 8 x^{3} + 3 x^{2} - x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59506232715491992087669=11^{16}\cdot 109^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{8623} a^{18} - \frac{560}{8623} a^{17} + \frac{2614}{8623} a^{16} - \frac{3387}{8623} a^{15} + \frac{2298}{8623} a^{14} + \frac{3598}{8623} a^{13} + \frac{4241}{8623} a^{12} - \frac{3022}{8623} a^{11} + \frac{3569}{8623} a^{10} - \frac{90}{8623} a^{9} + \frac{3569}{8623} a^{8} - \frac{3022}{8623} a^{7} + \frac{4241}{8623} a^{6} + \frac{3598}{8623} a^{5} + \frac{2298}{8623} a^{4} - \frac{3387}{8623} a^{3} + \frac{2614}{8623} a^{2} - \frac{560}{8623} a + \frac{1}{8623}$, $\frac{1}{8623} a^{19} - \frac{558}{8623} a^{17} + \frac{3166}{8623} a^{16} + \frac{2638}{8623} a^{15} - \frac{2972}{8623} a^{14} + \frac{1339}{8623} a^{13} + \frac{613}{8623} a^{12} + \frac{1357}{8623} a^{11} - \frac{1986}{8623} a^{10} - \frac{3716}{8623} a^{9} + \frac{3705}{8623} a^{8} + \frac{2029}{8623} a^{7} - \frac{1390}{8623} a^{6} - \frac{604}{8623} a^{5} - \frac{1334}{8623} a^{4} + \frac{2954}{8623} a^{3} - \frac{2630}{8623} a^{2} - \frac{3171}{8623} a + \frac{560}{8623}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2017.51236698 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.23365118029.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 109 | Data not computed | ||||||