Properties

Label 20.4.58343029654...2368.2
Degree $20$
Signature $[4, 8]$
Discriminant $2^{10}\cdot 19^{10}\cdot 43^{11}$
Root discriminant $48.79$
Ramified primes $2, 19, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T423

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2401, 9261, 20825, 30702, 32482, 25222, 17760, 17165, 13098, 8162, 4792, 2366, 1428, 318, -67, 128, -73, -23, 9, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 9*x^18 - 23*x^17 - 73*x^16 + 128*x^15 - 67*x^14 + 318*x^13 + 1428*x^12 + 2366*x^11 + 4792*x^10 + 8162*x^9 + 13098*x^8 + 17165*x^7 + 17760*x^6 + 25222*x^5 + 32482*x^4 + 30702*x^3 + 20825*x^2 + 9261*x + 2401)
 
gp: K = bnfinit(x^20 - 4*x^19 + 9*x^18 - 23*x^17 - 73*x^16 + 128*x^15 - 67*x^14 + 318*x^13 + 1428*x^12 + 2366*x^11 + 4792*x^10 + 8162*x^9 + 13098*x^8 + 17165*x^7 + 17760*x^6 + 25222*x^5 + 32482*x^4 + 30702*x^3 + 20825*x^2 + 9261*x + 2401, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 9 x^{18} - 23 x^{17} - 73 x^{16} + 128 x^{15} - 67 x^{14} + 318 x^{13} + 1428 x^{12} + 2366 x^{11} + 4792 x^{10} + 8162 x^{9} + 13098 x^{8} + 17165 x^{7} + 17760 x^{6} + 25222 x^{5} + 32482 x^{4} + 30702 x^{3} + 20825 x^{2} + 9261 x + 2401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5834302965409512291058019417402368=2^{10}\cdot 19^{10}\cdot 43^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{16} + \frac{2}{7} a^{15} - \frac{2}{7} a^{14} - \frac{3}{7} a^{13} + \frac{2}{7} a^{12} + \frac{3}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{7} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{4067} a^{18} - \frac{11}{4067} a^{17} - \frac{943}{4067} a^{16} + \frac{1629}{4067} a^{15} - \frac{941}{4067} a^{14} + \frac{2011}{4067} a^{13} - \frac{1600}{4067} a^{12} + \frac{101}{4067} a^{11} - \frac{2}{581} a^{10} + \frac{30}{581} a^{9} + \frac{1460}{4067} a^{8} + \frac{30}{83} a^{7} + \frac{1191}{4067} a^{6} + \frac{988}{4067} a^{5} + \frac{1338}{4067} a^{4} - \frac{314}{4067} a^{3} - \frac{12}{4067} a^{2} + \frac{9}{581} a + \frac{4}{83}$, $\frac{1}{6003370508440492192183951849748732547977} a^{19} - \frac{251853146647156765846434582861077105}{6003370508440492192183951849748732547977} a^{18} - \frac{398164306683206245987220301332343145023}{6003370508440492192183951849748732547977} a^{17} + \frac{923552447962207213546417957914192036100}{6003370508440492192183951849748732547977} a^{16} + \frac{2538505486818693689559963244735770374471}{6003370508440492192183951849748732547977} a^{15} - \frac{44174459415253281076715726319950025101}{315966868865289062746523781565722765683} a^{14} - \frac{1649256185847109246013958072553180052064}{6003370508440492192183951849748732547977} a^{13} - \frac{7606947140995687792221406880852531758}{315966868865289062746523781565722765683} a^{12} - \frac{228523825964570554812797932759770451543}{857624358348641741740564549964104649711} a^{11} + \frac{111117081679999264762531166843746477}{1255672559807674585271690409903520717} a^{10} - \frac{61194303017720400266383499643634795470}{6003370508440492192183951849748732547977} a^{9} - \frac{3180119901922969898565891238344255898}{122517765478377391677223507137729235673} a^{8} + \frac{2574509265821046600828068731962832508951}{6003370508440492192183951849748732547977} a^{7} + \frac{844278678328910162640788050020401349118}{6003370508440492192183951849748732547977} a^{6} + \frac{2001974063188479614777785787577452271174}{6003370508440492192183951849748732547977} a^{5} - \frac{2942298724584100170827497917991739769748}{6003370508440492192183951849748732547977} a^{4} + \frac{956424993479612984383940533434110544381}{6003370508440492192183951849748732547977} a^{3} + \frac{278321198754421570633262332081123188088}{857624358348641741740564549964104649711} a^{2} - \frac{33916592543069241308566040957776456459}{122517765478377391677223507137729235673} a - \frac{323690047708555706487616017173450560}{17502537925482484525317643876818462239}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 857212252.196 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T423:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 160 conjugacy class representatives for t20n423 are not computed
Character table for t20n423 is not computed

Intermediate fields

\(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.10$x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$43$43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.4.3.1$x^{4} + 387$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$