Normalized defining polynomial
\( x^{20} - 8 x^{19} + 29 x^{18} - 47 x^{17} - 49 x^{16} + 385 x^{15} - 656 x^{14} + 220 x^{13} + 2285 x^{12} - 7382 x^{11} + 9935 x^{10} + 667 x^{9} - 24088 x^{8} + 64517 x^{7} - 35816 x^{6} + 37128 x^{5} + 7036 x^{4} - 185493 x^{3} - 34122 x^{2} + 42028 x + 23471 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5834302965409512291058019417402368=2^{10}\cdot 19^{10}\cdot 43^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{5}{19} a^{15} - \frac{4}{19} a^{14} - \frac{9}{19} a^{12} - \frac{8}{19} a^{11} + \frac{2}{19} a^{10} + \frac{3}{19} a^{9} + \frac{9}{19} a^{8} - \frac{9}{19} a^{7} + \frac{7}{19} a^{6} - \frac{9}{19} a^{5} + \frac{5}{19} a^{4} + \frac{2}{19} a^{3} + \frac{6}{19} a^{2} - \frac{8}{19} a - \frac{2}{19}$, $\frac{1}{95} a^{17} - \frac{2}{95} a^{16} - \frac{2}{5} a^{15} - \frac{31}{95} a^{14} - \frac{28}{95} a^{13} - \frac{7}{19} a^{12} + \frac{7}{19} a^{11} + \frac{28}{95} a^{10} + \frac{18}{95} a^{9} - \frac{39}{95} a^{8} + \frac{18}{95} a^{7} + \frac{12}{95} a^{6} - \frac{22}{95} a^{5} + \frac{17}{95} a^{4} - \frac{26}{95} a^{3} + \frac{29}{95} a^{2} - \frac{7}{95} a - \frac{44}{95}$, $\frac{1}{95} a^{18} - \frac{2}{95} a^{16} - \frac{22}{95} a^{15} + \frac{7}{19} a^{14} + \frac{4}{95} a^{13} - \frac{3}{19} a^{12} - \frac{32}{95} a^{11} - \frac{36}{95} a^{10} + \frac{22}{95} a^{9} + \frac{3}{19} a^{8} - \frac{27}{95} a^{7} - \frac{3}{95} a^{6} - \frac{7}{95} a^{5} + \frac{18}{95} a^{4} - \frac{2}{5} a^{3} + \frac{6}{95} a^{2} + \frac{2}{95} a + \frac{22}{95}$, $\frac{1}{58147096463788770997749517681639563792410447420065} a^{19} - \frac{275896666560902417164802964197917134296682877926}{58147096463788770997749517681639563792410447420065} a^{18} - \frac{216368333795461806862343822118427583668003459874}{58147096463788770997749517681639563792410447420065} a^{17} + \frac{48593970137718390618134447773601585027805149814}{58147096463788770997749517681639563792410447420065} a^{16} + \frac{2329768209478698716481494354779784819165211334944}{8306728066255538713964216811662794827487206774295} a^{15} - \frac{250344008597734405614988400543001033871430758677}{8306728066255538713964216811662794827487206774295} a^{14} - \frac{12155281987783955604341813369198835077682040896128}{58147096463788770997749517681639563792410447420065} a^{13} - \frac{16981498032739063196959158784816013210828714823412}{58147096463788770997749517681639563792410447420065} a^{12} + \frac{418906804018681299387646948768749605457645243201}{58147096463788770997749517681639563792410447420065} a^{11} + \frac{1202050368960492464744222119876839435948535925502}{58147096463788770997749517681639563792410447420065} a^{10} + \frac{19350195750241604248097839039089548175388684870332}{58147096463788770997749517681639563792410447420065} a^{9} + \frac{138273343585410489429579596518079127043388084211}{1418221864970457829213402870283891799814888961465} a^{8} + \frac{8094745679538268419815273698553106749716009804143}{58147096463788770997749517681639563792410447420065} a^{7} - \frac{10753852219703805862686241768257606907691686284898}{58147096463788770997749517681639563792410447420065} a^{6} - \frac{26345271254205495220173275965835609086341152154626}{58147096463788770997749517681639563792410447420065} a^{5} - \frac{286591742932759087292542088057965520916378987565}{1661345613251107742792843362332558965497441354859} a^{4} + \frac{16379215690344890275549661277820284397641751940941}{58147096463788770997749517681639563792410447420065} a^{3} + \frac{562718684624563444600176375181765581302510169044}{8306728066255538713964216811662794827487206774295} a^{2} - \frac{14955738461675274842357233585404728447082868822201}{58147096463788770997749517681639563792410447420065} a - \frac{1649621616471500713578768941034264331066810931502}{8306728066255538713964216811662794827487206774295}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1117662309.57 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |