Normalized defining polynomial
\( x^{20} - x^{19} - 7 x^{18} + x^{17} + 38 x^{16} - 38 x^{15} - 91 x^{14} + 124 x^{13} + 237 x^{12} - 361 x^{11} - 232 x^{10} + 418 x^{9} + 132 x^{8} + 143 x^{7} - 561 x^{6} - 264 x^{5} + 605 x^{4} + 242 x^{3} - 363 x^{2} - 121 x + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57722337794481266110634089=11^{16}\cdot 23^{4}\cdot 67^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{1}{11} a^{14} + \frac{4}{11} a^{13} + \frac{1}{11} a^{12} + \frac{5}{11} a^{11} - \frac{5}{11} a^{10} - \frac{3}{11} a^{9} + \frac{3}{11} a^{8} - \frac{5}{11} a^{7} + \frac{2}{11} a^{6} - \frac{1}{11} a^{5}$, $\frac{1}{11} a^{16} + \frac{3}{11} a^{14} + \frac{5}{11} a^{13} - \frac{5}{11} a^{12} + \frac{3}{11} a^{10} - \frac{2}{11} a^{8} - \frac{3}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5}$, $\frac{1}{11} a^{17} - \frac{3}{11} a^{14} + \frac{5}{11} a^{13} - \frac{3}{11} a^{12} - \frac{1}{11} a^{11} + \frac{4}{11} a^{10} - \frac{4}{11} a^{9} - \frac{1}{11} a^{8} + \frac{5}{11} a^{7} + \frac{4}{11} a^{6} + \frac{3}{11} a^{5}$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{14} - \frac{2}{11} a^{13} + \frac{2}{11} a^{12} - \frac{3}{11} a^{11} + \frac{3}{11} a^{10} + \frac{1}{11} a^{9} + \frac{3}{11} a^{8} - \frac{2}{11} a^{6} - \frac{3}{11} a^{5}$, $\frac{1}{10846796239635426329034941} a^{19} - \frac{128645007115051174830582}{10846796239635426329034941} a^{18} + \frac{401286275794320072683488}{10846796239635426329034941} a^{17} + \frac{206564056444119457642892}{10846796239635426329034941} a^{16} + \frac{94321792132627491035376}{10846796239635426329034941} a^{15} - \frac{1851554089563154917848179}{10846796239635426329034941} a^{14} - \frac{326993782241458358189305}{10846796239635426329034941} a^{13} - \frac{4794828902857148921839489}{10846796239635426329034941} a^{12} + \frac{2690912631912745283452218}{10846796239635426329034941} a^{11} - \frac{3847246901906427183484222}{10846796239635426329034941} a^{10} - \frac{4064439923754495241183065}{10846796239635426329034941} a^{9} + \frac{2392250603718413737328281}{10846796239635426329034941} a^{8} - \frac{3898912335747504430639968}{10846796239635426329034941} a^{7} - \frac{4812889225928643611799103}{10846796239635426329034941} a^{6} + \frac{303936688471609130847628}{10846796239635426329034941} a^{5} + \frac{245968312255797898276230}{986072385421402393548631} a^{4} + \frac{321640656200079517911032}{986072385421402393548631} a^{3} - \frac{472327098654762192156439}{986072385421402393548631} a^{2} - \frac{29883819630358429858879}{986072385421402393548631} a + \frac{40965018533856051121743}{986072385421402393548631}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 74181.5040654 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 224 conjugacy class representatives for t20n341 are not computed |
| Character table for t20n341 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.330327035621.1, 10.8.7597521819283.4, 10.4.4930254263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |