Normalized defining polynomial
\( x^{20} - 7 x^{19} + 16 x^{18} - 16 x^{17} + 4 x^{16} + 41 x^{15} - 135 x^{14} + 186 x^{13} - 129 x^{12} + 238 x^{11} + 73 x^{10} - 176 x^{9} + 166 x^{8} + 90 x^{7} + 55 x^{6} - 12 x^{5} + 22 x^{4} + 10 x^{3} + 6 x^{2} + 7 x + 3 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57180852133785175762361058304=2^{10}\cdot 17^{4}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{1}{13} a^{16} + \frac{5}{13} a^{15} - \frac{3}{13} a^{14} - \frac{6}{13} a^{13} - \frac{3}{13} a^{12} + \frac{5}{13} a^{11} + \frac{6}{13} a^{10} + \frac{4}{13} a^{9} - \frac{1}{13} a^{8} + \frac{6}{13} a^{7} + \frac{2}{13} a^{6} - \frac{2}{13} a^{5} + \frac{1}{13} a^{4} - \frac{6}{13} a^{3} + \frac{2}{13} a^{2} + \frac{1}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{18} + \frac{4}{13} a^{16} + \frac{5}{13} a^{15} - \frac{3}{13} a^{14} + \frac{3}{13} a^{13} - \frac{5}{13} a^{12} + \frac{1}{13} a^{11} - \frac{2}{13} a^{10} - \frac{5}{13} a^{9} - \frac{6}{13} a^{8} - \frac{4}{13} a^{7} - \frac{4}{13} a^{6} + \frac{3}{13} a^{5} + \frac{6}{13} a^{4} - \frac{5}{13} a^{3} - \frac{1}{13} a^{2} + \frac{1}{13} a - \frac{2}{13}$, $\frac{1}{12856419394558643630233} a^{19} + \frac{250185363792057094328}{12856419394558643630233} a^{18} - \frac{133189685646033069233}{12856419394558643630233} a^{17} - \frac{1268483994272489252196}{12856419394558643630233} a^{16} + \frac{1439586295933404597393}{12856419394558643630233} a^{15} - \frac{5343899993453287093301}{12856419394558643630233} a^{14} + \frac{508933005322817306}{1866766283513669759} a^{13} - \frac{6224555138333261352927}{12856419394558643630233} a^{12} - \frac{57509544641948968152}{181076329500825966623} a^{11} - \frac{5784525296226597094045}{12856419394558643630233} a^{10} - \frac{330358778091828878609}{988955338042972586941} a^{9} + \frac{2130638516689079952250}{12856419394558643630233} a^{8} - \frac{3177432854291531118852}{12856419394558643630233} a^{7} - \frac{5333109898464446306788}{12856419394558643630233} a^{6} - \frac{4215346509035205339108}{12856419394558643630233} a^{5} + \frac{4200292054678391393485}{12856419394558643630233} a^{4} - \frac{295589532344519841039}{12856419394558643630233} a^{3} - \frac{2101861046337413266979}{12856419394558643630233} a^{2} - \frac{653947676267662137230}{12856419394558643630233} a + \frac{2164367817906981228554}{12856419394558643630233}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6267017.80878 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n853 are not computed |
| Character table for t20n853 is not computed |
Intermediate fields
| 5.5.160801.1, 10.2.439568347217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||