Normalized defining polynomial
\( x^{20} - 2 x^{19} - 25 x^{18} + 22 x^{17} + 340 x^{16} + 18 x^{15} - 2154 x^{14} - 846 x^{13} + 7834 x^{12} + 1924 x^{11} - 22488 x^{10} - 23996 x^{9} - 33136 x^{8} - 68098 x^{7} - 95903 x^{6} - 115590 x^{5} + 27465 x^{4} + 228482 x^{3} + 124442 x^{2} + 74898 x - 1297 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57149523933247890868652682483011584=2^{12}\cdot 97^{2}\cdot 33769^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{446419974423059317694534438372283213929971393471838846} a^{19} - \frac{32703836558938232022371248062843864267913792069552088}{223209987211529658847267219186141606964985696735919423} a^{18} + \frac{6706726491749655634530380089693904208605557751471207}{223209987211529658847267219186141606964985696735919423} a^{17} - \frac{16445427664721666765445066629274248945154035265207360}{223209987211529658847267219186141606964985696735919423} a^{16} - \frac{48650565838240868800722053489846888301565647487832125}{446419974423059317694534438372283213929971393471838846} a^{15} + \frac{109653394178712893385567948311512677561707239643444411}{446419974423059317694534438372283213929971393471838846} a^{14} - \frac{23605279024534353891856584220765684926941923623485670}{223209987211529658847267219186141606964985696735919423} a^{13} + \frac{26761840262490838944582554762583344177527310318620239}{446419974423059317694534438372283213929971393471838846} a^{12} + \frac{18947625224319787428115801833543105245657584334769366}{223209987211529658847267219186141606964985696735919423} a^{11} + \frac{68497249424220338563048192560026504756999740894414811}{446419974423059317694534438372283213929971393471838846} a^{10} - \frac{204121140683440337634451199447142866501147567651895111}{446419974423059317694534438372283213929971393471838846} a^{9} + \frac{54496438445676043943417657979928716143842176164565641}{223209987211529658847267219186141606964985696735919423} a^{8} - \frac{8321179948544879684613751730250550779529640865934723}{223209987211529658847267219186141606964985696735919423} a^{7} - \frac{53225515642621204843121019680911421916436602897466769}{446419974423059317694534438372283213929971393471838846} a^{6} - \frac{1696754315758049781522040452817219341439590019293460}{13129999247737038755721601128596565115587393925642319} a^{5} - \frac{203018597812608819760066038523564037109748304258002131}{446419974423059317694534438372283213929971393471838846} a^{4} - \frac{54249944151163397661958466243373094280615465574586213}{223209987211529658847267219186141606964985696735919423} a^{3} + \frac{38946331042451793894339623226776539840987290395329715}{446419974423059317694534438372283213929971393471838846} a^{2} + \frac{142388920195311062260262538694638949718209257736734187}{446419974423059317694534438372283213929971393471838846} a + \frac{60347842362799062448363907394940680716278962845725865}{223209987211529658847267219186141606964985696735919423}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 403887028.095 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.135076.1, 10.2.239059666052740672.1, 10.2.7079264001088.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 97 | Data not computed | ||||||
| 33769 | Data not computed | ||||||