# SageMath code for working with number field 20.4.5657954428456562353084024324409254309146809860096000000000000000.2. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^20 + 684*x^18 - 120*x^17 + 210872*x^16 - 27840*x^15 + 37744672*x^14 + 2898720*x^13 + 4248246835*x^12 + 2111045760*x^11 + 310035466968*x^10 + 366294835560*x^9 + 14179985825472*x^8 + 26313627836160*x^7 + 288546146778916*x^6 + 569323661850720*x^5 - 4104002620116539*x^4 - 1025151183166560*x^3 - 197619730538519440*x^2 + 186630461902181640*x + 61046467660180710) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^20 + 684*x^18 - 120*x^17 + 210872*x^16 - 27840*x^15 + 37744672*x^14 + 2898720*x^13 + 4248246835*x^12 + 2111045760*x^11 + 310035466968*x^10 + 366294835560*x^9 + 14179985825472*x^8 + 26313627836160*x^7 + 288546146778916*x^6 + 569323661850720*x^5 - 4104002620116539*x^4 - 1025151183166560*x^3 - 197619730538519440*x^2 + 186630461902181640*x + 61046467660180710) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]