Normalized defining polynomial
\( x^{20} - 135 x^{18} + 8415 x^{16} - 4 x^{15} - 318340 x^{14} - 310 x^{13} + 8082595 x^{12} + 26230 x^{11} - 143852455 x^{10} - 689170 x^{9} + 1818277605 x^{8} + 7693290 x^{7} - 16128380640 x^{6} - 8822742 x^{5} + 96104734755 x^{4} - 552975930 x^{3} - 347034273315 x^{2} + 3487818320 x + 575052033079 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56567708040139257656250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} - \frac{1}{7} a^{16} - \frac{1}{7} a^{15} - \frac{3}{14} a^{14} + \frac{1}{7} a^{13} - \frac{1}{14} a^{12} - \frac{3}{14} a^{11} - \frac{5}{14} a^{8} - \frac{5}{14} a^{7} + \frac{1}{14} a^{6} + \frac{3}{14} a^{5} - \frac{5}{14} a^{4} - \frac{3}{14} a^{3} - \frac{1}{14} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{19} - \frac{5903150414097845310812789377016582511852759487458509283054309501258028474346}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{18} + \frac{10400031921597919623158147211891781861503034475886805556532719981055561719507}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{17} + \frac{6866800356026692430943933140796793819261322945808356497756510890495352241341}{72751564560093348892258910035731282657293472712990748738263215243246216549986} a^{16} + \frac{9401054879882785172978388526348242521867485016199448209656361901931558818083}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{15} - \frac{23764668837705951424701004578072880533971803972675471919651590300338285342844}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{14} - \frac{55653541270682117954533086251865960170755346457442819549977404401576936912541}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{13} + \frac{21740801439584407197712550112236750888022887055724805490021573260105882362561}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{12} + \frac{28476823274391865419645507601472229975854858454985137789610145860731016172381}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{11} - \frac{10312814275393500684563531439359574963760890418838639593055821550456987973799}{72751564560093348892258910035731282657293472712990748738263215243246216549986} a^{10} - \frac{113871772867774595675586880638995300886560573697862016683346693749183595053019}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{9} - \frac{9719626107285889029098671296379469463464974103063866274838451059640512713671}{72751564560093348892258910035731282657293472712990748738263215243246216549986} a^{8} + \frac{97800113038688886605363522648018439953118287422265774725189966519714618523371}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{7} - \frac{205139407065676945229163309505005426784652583199553142255230396886256759572803}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{6} - \frac{21158237399046941582000343678574216872554936615554063177925823013041876696017}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{5} - \frac{5341273801508893087223800595517682234752308057995274661540434120968189299929}{254630475960326721122906185125059489300527154495467620583921253351361757924951} a^{4} - \frac{86169798139345777691989786932979623964833524901088868798905740647286170660063}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a^{3} + \frac{736817417003943925000358398411849922705666996890962478974886192366659253255}{72751564560093348892258910035731282657293472712990748738263215243246216549986} a^{2} - \frac{89885043746375602003939852940251609411272420575826012412095569620046270132401}{509260951920653442245812370250118978601054308990935241167842506702723515849902} a - \frac{40560409922838111743568858598769045538282366310506606428821153578723265259813}{509260951920653442245812370250118978601054308990935241167842506702723515849902}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), \(\Q(\sqrt{285}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{57})\), 5.1.50000.1, 10.2.7521150712500000000.1, 10.2.1504230142500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |