Normalized defining polynomial
\( x^{20} + 2998 x^{18} - 590506 x^{16} - 9158944433 x^{14} - 9101711382939 x^{12} - 2415557541551610 x^{10} + 545904341348455920 x^{8} + 333331964079477992575 x^{6} + 47773773343213035028450 x^{4} + 2520112834651844975036250 x^{2} + 43950182127057497055453625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56048985368357082097694845902442652817568000000000000000=2^{20}\cdot 5^{15}\cdot 1039^{5}\cdot 67931^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $612.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1039, 67931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{4}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{5}$, $\frac{1}{1764507725} a^{16} + \frac{2998}{1764507725} a^{14} - \frac{590506}{1764507725} a^{12} - \frac{336405808}{1764507725} a^{10} - \frac{380537389}{1764507725} a^{8} + \frac{119748328}{352901545} a^{6} - \frac{171833846}{352901545} a^{4} + \frac{7135962}{70580309} a^{2}$, $\frac{1}{1764507725} a^{17} + \frac{2998}{1764507725} a^{15} - \frac{590506}{1764507725} a^{13} - \frac{336405808}{1764507725} a^{11} - \frac{380537389}{1764507725} a^{9} + \frac{119748328}{352901545} a^{7} - \frac{171833846}{352901545} a^{5} + \frac{7135962}{70580309} a^{3}$, $\frac{1}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{18} - \frac{278945505947719152373704901270782812972062824887948028370492920166287320793191130950239281920518285021}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{16} - \frac{72036239884367444563555113564003995232474153344815173723576416322127706961160929590361765559634758622560938453}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{14} - \frac{652548503920698073960381985052688534769252501081575816611084689436866705139725058074001672457283166665898863589}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{12} - \frac{2894071211466706047820445794049530895733517775482559159497637565334935235768326169740345124907472182652741434697}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{10} - \frac{3189819826908931672671755206731015216715485448447864226717200756761616727264358901379644272711008318113503399949}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{8} - \frac{690461708371922978298342282652525906277237758728942800514783196004081306934737877306868279723174467817125505476}{1907033056193903503854418547881439588703700857558769393990726622788931029079764077929523423795750236191775820415} a^{6} - \frac{858226968440730997324424805901687756593391037822376540388889743356392287249028676464812727140558083069127112679}{1907033056193903503854418547881439588703700857558769393990726622788931029079764077929523423795750236191775820415} a^{4} + \frac{799027716791464500263606446727398323881308163375349593030327444945364434298083708792042732024588864307}{5403867121618590544437595329545637406330144736427179410593758162177870400311690553606172009804463270887} a^{2} - \frac{31517761067051867825223142363653611307161603908187112808556801048479896588761131424257968371315}{76563381461231496513249826230509098597600992883541773819575629261949963980912729549061226266443}$, $\frac{1}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{19} - \frac{278945505947719152373704901270782812972062824887948028370492920166287320793191130950239281920518285021}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{17} - \frac{72036239884367444563555113564003995232474153344815173723576416322127706961160929590361765559634758622560938453}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{15} - \frac{652548503920698073960381985052688534769252501081575816611084689436866705139725058074001672457283166665898863589}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{13} - \frac{2894071211466706047820445794049530895733517775482559159497637565334935235768326169740345124907472182652741434697}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{11} - \frac{3189819826908931672671755206731015216715485448447864226717200756761616727264358901379644272711008318113503399949}{9535165280969517519272092739407197943518504287793846969953633113944655145398820389647617118978751180958879102075} a^{9} - \frac{690461708371922978298342282652525906277237758728942800514783196004081306934737877306868279723174467817125505476}{1907033056193903503854418547881439588703700857558769393990726622788931029079764077929523423795750236191775820415} a^{7} - \frac{858226968440730997324424805901687756593391037822376540388889743356392287249028676464812727140558083069127112679}{1907033056193903503854418547881439588703700857558769393990726622788931029079764077929523423795750236191775820415} a^{5} + \frac{799027716791464500263606446727398323881308163375349593030327444945364434298083708792042732024588864307}{5403867121618590544437595329545637406330144736427179410593758162177870400311690553606172009804463270887} a^{3} - \frac{31517761067051867825223142363653611307161603908187112808556801048479896588761131424257968371315}{76563381461231496513249826230509098597600992883541773819575629261949963980912729549061226266443} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.1102817328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 1039 | Data not computed | ||||||
| 67931 | Data not computed | ||||||