Normalized defining polynomial
\( x^{20} - 4 x^{19} - 3 x^{18} + 27 x^{17} - 4 x^{16} - 71 x^{15} + 12 x^{14} + 112 x^{13} - 12 x^{12} - 133 x^{11} + 23 x^{10} + 184 x^{9} + 39 x^{8} - 186 x^{7} - 175 x^{6} - 12 x^{5} + 73 x^{4} + 49 x^{3} + 10 x^{2} - 2 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(558250760924046539346176=2^{8}\cdot 67^{4}\cdot 641^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 67, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{719281} a^{19} - \frac{181311}{719281} a^{18} - \frac{346069}{719281} a^{17} - \frac{307263}{719281} a^{16} - \frac{99994}{719281} a^{15} + \frac{134482}{719281} a^{14} - \frac{340624}{719281} a^{13} + \frac{49020}{719281} a^{12} - \frac{233116}{719281} a^{11} - \frac{108362}{719281} a^{10} + \frac{347923}{719281} a^{9} + \frac{68523}{719281} a^{8} - \frac{278090}{719281} a^{7} + \frac{223187}{719281} a^{6} - \frac{55086}{719281} a^{5} + \frac{260705}{719281} a^{4} - \frac{90447}{719281} a^{3} - \frac{213241}{719281} a^{2} + \frac{12966}{719281} a - \frac{216256}{719281}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7126.35232491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.2.1844444809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.6.0.1 | $x^{6} + x^{2} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 67.6.4.3 | $x^{6} + 1541 x^{3} + 646416$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 641 | Data not computed | ||||||