Normalized defining polynomial
\( x^{20} - 8 x^{18} - 9 x^{17} + 13 x^{16} + 166 x^{15} + 5 x^{14} - 971 x^{13} + 131 x^{12} + 2424 x^{11} + 448 x^{10} - 3591 x^{9} - 5712 x^{8} + 8026 x^{7} + 12602 x^{6} - 17257 x^{5} - 9296 x^{4} + 21397 x^{3} - 7953 x^{2} - 1230 x + 823 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545383254783122586260848117921=13^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{39} a^{18} - \frac{3}{13} a^{17} + \frac{17}{39} a^{16} - \frac{3}{13} a^{15} + \frac{7}{39} a^{13} - \frac{19}{39} a^{12} + \frac{17}{39} a^{11} - \frac{11}{39} a^{10} + \frac{11}{39} a^{9} - \frac{10}{39} a^{8} + \frac{17}{39} a^{7} - \frac{1}{39} a^{6} - \frac{5}{13} a^{5} + \frac{1}{39} a^{4} - \frac{7}{39} a^{3} - \frac{7}{39} a^{2} + \frac{4}{13} a + \frac{14}{39}$, $\frac{1}{86476622935896007802988089382423} a^{19} - \frac{1082112285462644391870075015997}{86476622935896007802988089382423} a^{18} + \frac{3315088746257253007611111672368}{86476622935896007802988089382423} a^{17} + \frac{12041726937723884379957327960109}{86476622935896007802988089382423} a^{16} + \frac{9901735318202869665291547292834}{28825540978632002600996029794141} a^{15} - \frac{4429585054150253261847154544888}{86476622935896007802988089382423} a^{14} - \frac{5327985656574784244516747875526}{86476622935896007802988089382423} a^{13} + \frac{2396906771953135042727118570217}{28825540978632002600996029794141} a^{12} + \frac{35865087222322172189733226077602}{86476622935896007802988089382423} a^{11} + \frac{39596882452385836337116039972099}{86476622935896007802988089382423} a^{10} + \frac{2773074466243034402775068333360}{28825540978632002600996029794141} a^{9} - \frac{5885053963581292236727825715978}{28825540978632002600996029794141} a^{8} - \frac{300323760236280203902104063707}{739116435349538528230667430619} a^{7} - \frac{17943168103486509843990437875688}{86476622935896007802988089382423} a^{6} - \frac{14314319328680978118120230573165}{86476622935896007802988089382423} a^{5} + \frac{22910414593473354548926758825811}{86476622935896007802988089382423} a^{4} - \frac{234258543555060556102690487872}{9608513659544000866998676598047} a^{3} + \frac{26960304385669662111280807313131}{86476622935896007802988089382423} a^{2} - \frac{5563643010633461947221581268790}{86476622935896007802988089382423} a + \frac{3685619663193533852059419601894}{86476622935896007802988089382423}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16331128.0172 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.4369826510569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||