Normalized defining polynomial
\( x^{20} - x^{19} + 9 x^{18} - 41 x^{17} + 154 x^{16} - 773 x^{15} + 2026 x^{14} - 4929 x^{13} + 12491 x^{12} - 11134 x^{11} - 15441 x^{10} + 91658 x^{9} - 228717 x^{8} - 233197 x^{7} + 1624938 x^{6} - 1158742 x^{5} - 2192037 x^{4} + 3529578 x^{3} - 2820992 x^{2} + 2354928 x - 261584 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(519780793144362253735210235595703125=3^{10}\cdot 5^{15}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{3}{10} a^{6} - \frac{3}{10} a$, $\frac{1}{50} a^{12} + \frac{1}{25} a^{10} + \frac{2}{25} a^{9} + \frac{2}{25} a^{8} - \frac{9}{50} a^{7} + \frac{7}{25} a^{6} + \frac{9}{25} a^{5} + \frac{11}{25} a^{4} + \frac{11}{25} a^{3} - \frac{11}{50} a^{2} + \frac{1}{25} a - \frac{12}{25}$, $\frac{1}{50} a^{13} + \frac{1}{25} a^{11} + \frac{2}{25} a^{10} + \frac{2}{25} a^{9} + \frac{1}{50} a^{8} - \frac{3}{25} a^{7} - \frac{6}{25} a^{6} + \frac{11}{25} a^{5} - \frac{9}{25} a^{4} - \frac{11}{50} a^{3} - \frac{9}{25} a^{2} + \frac{8}{25} a + \frac{1}{5}$, $\frac{1}{50} a^{14} - \frac{1}{50} a^{11} + \frac{3}{50} a^{9} - \frac{2}{25} a^{8} + \frac{8}{25} a^{7} + \frac{19}{50} a^{6} + \frac{3}{25} a^{5} - \frac{1}{2} a^{4} + \frac{9}{25} a^{3} + \frac{9}{25} a^{2} + \frac{1}{50} a - \frac{11}{25}$, $\frac{1}{50} a^{15} - \frac{1}{10} a^{10} - \frac{2}{5} a^{6} + \frac{23}{50} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{7}{25}$, $\frac{1}{500} a^{16} + \frac{1}{250} a^{15} - \frac{1}{125} a^{14} + \frac{1}{500} a^{13} + \frac{1}{500} a^{12} + \frac{11}{500} a^{11} - \frac{1}{125} a^{10} + \frac{13}{250} a^{9} + \frac{41}{500} a^{8} - \frac{149}{500} a^{7} - \frac{11}{500} a^{6} + \frac{53}{125} a^{5} - \frac{59}{125} a^{4} + \frac{39}{500} a^{3} + \frac{119}{500} a^{2} + \frac{7}{50} a - \frac{56}{125}$, $\frac{1}{500} a^{17} + \frac{1}{250} a^{15} - \frac{1}{500} a^{14} - \frac{1}{500} a^{13} - \frac{1}{500} a^{12} - \frac{4}{125} a^{11} - \frac{9}{125} a^{10} + \frac{19}{500} a^{9} - \frac{31}{500} a^{8} + \frac{117}{500} a^{7} + \frac{1}{125} a^{6} - \frac{7}{50} a^{5} + \frac{141}{500} a^{4} - \frac{159}{500} a^{3} + \frac{81}{250} a^{2} - \frac{97}{250} a + \frac{42}{125}$, $\frac{1}{500} a^{18} - \frac{1}{100} a^{15} - \frac{3}{500} a^{14} - \frac{3}{500} a^{13} + \frac{1}{250} a^{12} + \frac{1}{250} a^{11} - \frac{33}{500} a^{10} - \frac{33}{500} a^{9} - \frac{9}{100} a^{8} - \frac{69}{250} a^{7} - \frac{2}{125} a^{6} - \frac{183}{500} a^{5} - \frac{197}{500} a^{4} - \frac{39}{125} a^{3} + \frac{17}{125} a^{2} + \frac{27}{125} a - \frac{53}{125}$, $\frac{1}{8003689693361567058357836618656264041434159311000} a^{19} + \frac{1154126730515620732422542134618700451646201751}{1600737938672313411671567323731252808286831862200} a^{18} + \frac{6649022692022738171754360124812637439472794503}{8003689693361567058357836618656264041434159311000} a^{17} - \frac{3302387394475820957252893559464671376650984353}{8003689693361567058357836618656264041434159311000} a^{16} - \frac{22747612095387706137337744575055696565531050249}{4001844846680783529178918309328132020717079655500} a^{15} + \frac{51601781122555179439197118124980354157805375981}{8003689693361567058357836618656264041434159311000} a^{14} + \frac{7268957892632677749433809342849752394177640439}{2000922423340391764589459154664066010358539827750} a^{13} + \frac{11702033270174397332620729729506117912525508201}{8003689693361567058357836618656264041434159311000} a^{12} - \frac{149755567478424079013521456115596748696540950269}{8003689693361567058357836618656264041434159311000} a^{11} - \frac{283713001292133837939772821728362934217824375127}{4001844846680783529178918309328132020717079655500} a^{10} + \frac{440539966783154361884559603482216395853243715169}{8003689693361567058357836618656264041434159311000} a^{9} - \frac{97977553319273517349846457000879850166487723598}{1000461211670195882294729577332033005179269913875} a^{8} + \frac{628279507272642476838688835171752356260141414037}{1600737938672313411671567323731252808286831862200} a^{7} - \frac{2919018474021418777679861840902183398912554198773}{8003689693361567058357836618656264041434159311000} a^{6} - \frac{394594677854055901058185353355000732012723242609}{4001844846680783529178918309328132020717079655500} a^{5} + \frac{14730233919103608615731611007629534153529455742}{200092242334039176458945915466406601035853982775} a^{4} + \frac{3101756675674934352032328027273333792232661036029}{8003689693361567058357836618656264041434159311000} a^{3} - \frac{229027444294153624579175858404846466876914351849}{4001844846680783529178918309328132020717079655500} a^{2} + \frac{747999194826768595855700034991583913762116122999}{2000922423340391764589459154664066010358539827750} a - \frac{344078900528510136712345190875739429909133811883}{1000461211670195882294729577332033005179269913875}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 689582360.0767176 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 5.1.16290125.1, 10.2.1326840862578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.10.8.1 | $x^{10} - 209 x^{5} + 11552$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ |
| 19.10.8.1 | $x^{10} - 209 x^{5} + 11552$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ |