Normalized defining polynomial
\( x^{20} + 14 x^{18} - 6 x^{17} - 127 x^{16} + 222 x^{15} - 3175 x^{14} + 5576 x^{13} - 25498 x^{12} + 37338 x^{11} - 75591 x^{10} + 100264 x^{9} + 221224 x^{8} + 51548 x^{7} + 2428039 x^{6} + 86060 x^{5} + 9325209 x^{4} + 2063292 x^{3} + 22584596 x^{2} + 4068144 x + 28702565 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5122032215736963025518846392163893248=2^{20}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{225570218427097007593176857145160903912307004569281312236039699952775} a^{19} - \frac{4943467977785911628655287116921238543015017982455295347317572512232}{225570218427097007593176857145160903912307004569281312236039699952775} a^{18} - \frac{91492465986658208586834017653399397696782474554447352742676761081612}{225570218427097007593176857145160903912307004569281312236039699952775} a^{17} + \frac{14224530615157686504603393336476993102751952396017014581095920954003}{225570218427097007593176857145160903912307004569281312236039699952775} a^{16} + \frac{65809048207844756438728130813970923873802440286657795990204206836652}{225570218427097007593176857145160903912307004569281312236039699952775} a^{15} - \frac{7929057203415784241559630011120636833939485327504892380646964063259}{17351555263622846737936681318858531070177461889944716325849207688675} a^{14} + \frac{97617380621528792982508432614730550140998502349894142923146071028619}{225570218427097007593176857145160903912307004569281312236039699952775} a^{13} + \frac{71807930905026313554805316860395578577708002179009444029038780579768}{225570218427097007593176857145160903912307004569281312236039699952775} a^{12} - \frac{32204704502790492529951511078631359770075523894992654806229372017599}{225570218427097007593176857145160903912307004569281312236039699952775} a^{11} + \frac{102622817551286402380862653888945589094915058140710069383311525016106}{225570218427097007593176857145160903912307004569281312236039699952775} a^{10} - \frac{89175494769777258615887971886426702250280812346421554379018746723908}{225570218427097007593176857145160903912307004569281312236039699952775} a^{9} - \frac{4158533007723899336170818399624857026728339898632585436996051180561}{45114043685419401518635371429032180782461400913856262447207939990555} a^{8} - \frac{104742522309670239500026662963067261883007931912431258451697670602066}{225570218427097007593176857145160903912307004569281312236039699952775} a^{7} + \frac{15640007135557475375486456706826610278578926062524417511832630185772}{45114043685419401518635371429032180782461400913856262447207939990555} a^{6} - \frac{10916172532327633026315722346303314008163359972213491070161638041306}{225570218427097007593176857145160903912307004569281312236039699952775} a^{5} - \frac{49119004935877500527389394928741808533525792122514970161043430847448}{225570218427097007593176857145160903912307004569281312236039699952775} a^{4} - \frac{3634550944711170938290145177759645396848650623172430331309591117906}{45114043685419401518635371429032180782461400913856262447207939990555} a^{3} + \frac{5956666238776246784659930966381847070710002303179121440561938897002}{225570218427097007593176857145160903912307004569281312236039699952775} a^{2} + \frac{50030307215569963968034491299995288595348018716136937409728125836682}{225570218427097007593176857145160903912307004569281312236039699952775} a + \frac{2365947776178697695747071959647598212690847216619469542564399570999}{45114043685419401518635371429032180782461400913856262447207939990555}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36795802607.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.14543233665344512.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||