Normalized defining polynomial
\( x^{20} - 10 x^{19} + 55 x^{18} - 210 x^{17} + 621 x^{16} - 1500 x^{15} + 3066 x^{14} - 5412 x^{13} + 8299 x^{12} - 11002 x^{11} + 12355 x^{10} - 11346 x^{9} + 7942 x^{8} - 3484 x^{7} - 38 x^{6} + 1496 x^{5} - 1244 x^{4} + 498 x^{3} - 61 x^{2} - 26 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(511072393702926193004148424704=2^{20}\cdot 3^{6}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{531} a^{16} - \frac{8}{531} a^{15} + \frac{4}{59} a^{14} - \frac{112}{531} a^{13} - \frac{247}{531} a^{12} - \frac{9}{59} a^{11} + \frac{100}{531} a^{10} + \frac{208}{531} a^{9} + \frac{226}{531} a^{8} - \frac{61}{177} a^{7} + \frac{83}{531} a^{6} + \frac{74}{531} a^{5} - \frac{128}{531} a^{4} + \frac{32}{531} a^{3} - \frac{122}{531} a^{2} + \frac{121}{531} a + \frac{16}{59}$, $\frac{1}{531} a^{17} - \frac{28}{531} a^{15} + \frac{176}{531} a^{14} - \frac{9}{59} a^{13} + \frac{67}{531} a^{12} - \frac{17}{531} a^{11} - \frac{6}{59} a^{10} - \frac{26}{59} a^{9} + \frac{32}{531} a^{8} + \frac{212}{531} a^{7} + \frac{23}{59} a^{6} - \frac{67}{531} a^{5} + \frac{70}{531} a^{4} + \frac{134}{531} a^{3} + \frac{23}{59} a^{2} + \frac{50}{531} a + \frac{10}{59}$, $\frac{1}{531} a^{18} - \frac{16}{177} a^{15} - \frac{15}{59} a^{14} + \frac{13}{59} a^{13} - \frac{10}{177} a^{12} - \frac{22}{59} a^{11} - \frac{89}{531} a^{10} + \frac{5}{177} a^{9} + \frac{56}{177} a^{8} - \frac{46}{177} a^{7} + \frac{133}{531} a^{6} + \frac{2}{59} a^{5} - \frac{88}{177} a^{4} + \frac{41}{531} a^{3} - \frac{20}{59} a^{2} - \frac{239}{531} a - \frac{24}{59}$, $\frac{1}{203373} a^{19} + \frac{182}{203373} a^{18} + \frac{146}{203373} a^{17} - \frac{137}{203373} a^{16} + \frac{76961}{203373} a^{15} - \frac{63557}{203373} a^{14} + \frac{24716}{203373} a^{13} - \frac{27524}{203373} a^{12} + \frac{21925}{67791} a^{11} + \frac{9730}{22597} a^{10} - \frac{24290}{203373} a^{9} - \frac{83239}{203373} a^{8} + \frac{66860}{203373} a^{7} + \frac{50245}{203373} a^{6} + \frac{1702}{22597} a^{5} - \frac{11527}{203373} a^{4} + \frac{26122}{203373} a^{3} + \frac{74456}{203373} a^{2} + \frac{21847}{203373} a - \frac{4981}{22597}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15796411.7495 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n853 are not computed |
| Character table for t20n853 is not computed |
Intermediate fields
| 5.5.160801.1, 10.8.238297758114816.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||