Normalized defining polynomial
\( x^{20} - 6 x^{18} + 13 x^{16} - 22 x^{14} + 20 x^{12} + 70 x^{10} + 287 x^{8} - 198 x^{6} - 465 x^{4} - 230 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50522262278163705147147943936=2^{40}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{4}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{4}{9} a^{7} - \frac{1}{3} a^{5} + \frac{1}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{621} a^{16} - \frac{2}{621} a^{14} - \frac{44}{621} a^{12} - \frac{100}{621} a^{10} - \frac{29}{207} a^{8} + \frac{275}{621} a^{6} + \frac{61}{621} a^{4} + \frac{233}{621} a^{2} - \frac{38}{621}$, $\frac{1}{621} a^{17} - \frac{2}{621} a^{15} - \frac{44}{621} a^{13} - \frac{100}{621} a^{11} - \frac{29}{207} a^{9} + \frac{275}{621} a^{7} + \frac{61}{621} a^{5} + \frac{233}{621} a^{3} - \frac{38}{621} a$, $\frac{1}{1767891987} a^{18} - \frac{803293}{1767891987} a^{16} - \frac{39913315}{1767891987} a^{14} + \frac{5203936}{589297329} a^{12} + \frac{398586131}{1767891987} a^{10} + \frac{794298824}{1767891987} a^{8} + \frac{119096}{65477481} a^{6} + \frac{17422274}{65477481} a^{4} - \frac{59462105}{589297329} a^{2} + \frac{391783942}{1767891987}$, $\frac{1}{1767891987} a^{19} - \frac{803293}{1767891987} a^{17} - \frac{39913315}{1767891987} a^{15} + \frac{5203936}{589297329} a^{13} + \frac{398586131}{1767891987} a^{11} + \frac{794298824}{1767891987} a^{9} + \frac{119096}{65477481} a^{7} + \frac{17422274}{65477481} a^{5} - \frac{59462105}{589297329} a^{3} + \frac{391783942}{1767891987} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2467785.33551 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T44):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1, 10.2.7024111812608.1, 10.2.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |