Normalized defining polynomial
\( x^{20} - 2 x^{19} - 4 x^{18} + 14 x^{17} + 60 x^{16} - 64 x^{15} + 259 x^{14} - 1788 x^{13} - 3379 x^{12} - 10540 x^{11} - 6298 x^{10} + 18228 x^{9} + 97178 x^{8} + 226752 x^{7} + 323120 x^{6} + 497726 x^{5} + 203646 x^{4} - 444270 x^{3} + 244453 x^{2} - 59912 x + 2495 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4518916932726743211517322831555685206094810141007417534712330} a^{19} - \frac{322021218615779175541200609076113805103761290746773132379628}{2259458466363371605758661415777842603047405070503708767356165} a^{18} + \frac{12141317350164410842994178168240891356756821251097886455158}{451891693272674321151732283155568520609481014100741753471233} a^{17} + \frac{170513453878892012948073085354562707299292578515508020621089}{4518916932726743211517322831555685206094810141007417534712330} a^{16} - \frac{70396604670327714031593595253962932521379735885814385027408}{2259458466363371605758661415777842603047405070503708767356165} a^{15} - \frac{111516467473166512151889938417307510113543455418476377148365}{903783386545348642303464566311137041218962028201483506942466} a^{14} - \frac{1430161932334579787650864612602714247820309088718210926563531}{4518916932726743211517322831555685206094810141007417534712330} a^{13} - \frac{42073878848232222091577798200843789938574498916747448643699}{4518916932726743211517322831555685206094810141007417534712330} a^{12} - \frac{90420937699489114711779997518880971105987358376043608940869}{2259458466363371605758661415777842603047405070503708767356165} a^{11} - \frac{364258127186379821234834608147755642819508793263809224273953}{4518916932726743211517322831555685206094810141007417534712330} a^{10} - \frac{1075741688621690536734416349510092913390622167464210157290378}{2259458466363371605758661415777842603047405070503708767356165} a^{9} + \frac{1023858393273786330731707899889497419195412422602172424786516}{2259458466363371605758661415777842603047405070503708767356165} a^{8} + \frac{203334446344072434988145769571956667867587648249774382117944}{451891693272674321151732283155568520609481014100741753471233} a^{7} - \frac{2186799938254708318762159008645964537519097213041246192512993}{4518916932726743211517322831555685206094810141007417534712330} a^{6} + \frac{268640990064404904111858564623167238686117330703483402489306}{2259458466363371605758661415777842603047405070503708767356165} a^{5} - \frac{578945121501720709090218826110736658787766719482269504470071}{2259458466363371605758661415777842603047405070503708767356165} a^{4} + \frac{801504749641405221454897335383802100865425332083363298284649}{4518916932726743211517322831555685206094810141007417534712330} a^{3} + \frac{365723101594134457829974358503808836784119472898761990054152}{2259458466363371605758661415777842603047405070503708767356165} a^{2} - \frac{245855819564346213919896699792745271822411788097462269623179}{2259458466363371605758661415777842603047405070503708767356165} a + \frac{120690354952720510920640724860814630121487320437878837044366}{451891693272674321151732283155568520609481014100741753471233}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1436849758.19 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||