Normalized defining polynomial
\( x^{20} - 8 x^{19} + 12 x^{18} + 91 x^{17} - 399 x^{16} + 160 x^{15} + 1983 x^{14} - 2137 x^{13} - 10263 x^{12} + 22539 x^{11} + 15224 x^{10} - 70271 x^{9} - 38287 x^{8} + 252651 x^{7} - 146823 x^{6} - 126788 x^{5} - 117789 x^{4} + 270872 x^{3} + 32559 x^{2} - 10657 x + 2785 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1657586753629930113514081965328582059412723832961823135} a^{19} - \frac{6011581989949915520941018600508134970887122585614049}{331517350725986022702816393065716411882544766592364627} a^{18} + \frac{582764778759434807260765546844258471036147169072865262}{1657586753629930113514081965328582059412723832961823135} a^{17} - \frac{668300250474489565514691271432563776277298637545764628}{1657586753629930113514081965328582059412723832961823135} a^{16} + \frac{266293433267394861303926943095169555919360092681707442}{1657586753629930113514081965328582059412723832961823135} a^{15} + \frac{702532109539270347620368206480948428166534762763800791}{1657586753629930113514081965328582059412723832961823135} a^{14} - \frac{535084464087872980172212043999763667243374833591026259}{1657586753629930113514081965328582059412723832961823135} a^{13} - \frac{170722188475463313949001023159813711812728584053599814}{1657586753629930113514081965328582059412723832961823135} a^{12} - \frac{19925502147457101287556336571119288380671097026642861}{331517350725986022702816393065716411882544766592364627} a^{11} - \frac{448141015812544011041711892973213693026418423708912751}{1657586753629930113514081965328582059412723832961823135} a^{10} + \frac{710277205177841075997723376137448019754697790778049006}{1657586753629930113514081965328582059412723832961823135} a^{9} + \frac{285091815529498319387267214873384975946725499716228832}{1657586753629930113514081965328582059412723832961823135} a^{8} - \frac{414974672541416178622518500911932062241651775929979201}{1657586753629930113514081965328582059412723832961823135} a^{7} - \frac{305024276790840668836065576875933116857768640071399727}{1657586753629930113514081965328582059412723832961823135} a^{6} + \frac{295517839252633093582797642634490835446390497760713621}{1657586753629930113514081965328582059412723832961823135} a^{5} + \frac{4504021720701590990803378519086700631911821987443243}{331517350725986022702816393065716411882544766592364627} a^{4} + \frac{286370948921523538553942496752739337201836898539824471}{1657586753629930113514081965328582059412723832961823135} a^{3} - \frac{119992692007344121035486119944161489258365883044364328}{331517350725986022702816393065716411882544766592364627} a^{2} + \frac{523261285182595514239295855399418415028105854349704809}{1657586753629930113514081965328582059412723832961823135} a + \frac{125681974457061081439502142367243427961644071785285200}{331517350725986022702816393065716411882544766592364627}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1385223819.26 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||