Normalized defining polynomial
\( x^{20} - 9 x^{19} + 60 x^{18} - 260 x^{17} + 900 x^{16} - 2359 x^{15} + 4805 x^{14} - 6353 x^{13} - 641 x^{12} + 34139 x^{11} - 125742 x^{10} + 308575 x^{9} - 637436 x^{8} + 1188916 x^{7} - 1945372 x^{6} + 2489444 x^{5} - 2626852 x^{4} + 2867874 x^{3} - 2683885 x^{2} + 552599 x + 1804319 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2478273104131196942784304816852385059651040567057814562400749} a^{19} + \frac{1058988470534108043407658833318297048314759874966538369257397}{2478273104131196942784304816852385059651040567057814562400749} a^{18} - \frac{251051907980152985671545469967936949799944330839718230179287}{2478273104131196942784304816852385059651040567057814562400749} a^{17} + \frac{82497610182088525660389484584195353698491891878634470111224}{2478273104131196942784304816852385059651040567057814562400749} a^{16} + \frac{970920519904362738714714384182020683775350621044136414327709}{2478273104131196942784304816852385059651040567057814562400749} a^{15} + \frac{236178785698312236744431408389715945006377718410749973335367}{2478273104131196942784304816852385059651040567057814562400749} a^{14} + \frac{27779430002208546976467670784833561076262047543067205342914}{2478273104131196942784304816852385059651040567057814562400749} a^{13} + \frac{1136132567142538705652053173067807520283964925171060200492844}{2478273104131196942784304816852385059651040567057814562400749} a^{12} - \frac{66909529059304969005337378344923045277853044130146717828621}{2478273104131196942784304816852385059651040567057814562400749} a^{11} - \frac{1030685508078098353784462613424533385027724693196747469020139}{2478273104131196942784304816852385059651040567057814562400749} a^{10} + \frac{620037145524074248345442141783242576276425923017735069843152}{2478273104131196942784304816852385059651040567057814562400749} a^{9} - \frac{576485748140855087689815196955074153653566625078994769394561}{2478273104131196942784304816852385059651040567057814562400749} a^{8} - \frac{362476162535870929722241973179125685985096964021525878499666}{2478273104131196942784304816852385059651040567057814562400749} a^{7} + \frac{278318450358541374342272521503448018774075189298772990674606}{2478273104131196942784304816852385059651040567057814562400749} a^{6} + \frac{477195002620174919326481169246599216307333800477926638404355}{2478273104131196942784304816852385059651040567057814562400749} a^{5} + \frac{769666022578519686955548284469853316527054571371433073613880}{2478273104131196942784304816852385059651040567057814562400749} a^{4} + \frac{576357898283158566158760052613059353393321376581920958487322}{2478273104131196942784304816852385059651040567057814562400749} a^{3} - \frac{113137234816638763043047700786040443126156655155154020526895}{2478273104131196942784304816852385059651040567057814562400749} a^{2} - \frac{177199803966084529951259228337566706312597073099942540001807}{2478273104131196942784304816852385059651040567057814562400749} a - \frac{982660284404085895185238425989096468207824512824025494292981}{2478273104131196942784304816852385059651040567057814562400749}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87517125.2204 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||