Normalized defining polynomial
\( x^{20} - 4 x^{19} - 6 x^{18} + 3 x^{17} - 83 x^{16} + 502 x^{15} + 262 x^{14} - 106 x^{13} - 1741 x^{12} - 15830 x^{11} + 11468 x^{10} + 25565 x^{9} - 8639 x^{8} + 195260 x^{7} - 204976 x^{6} - 348632 x^{5} + 139931 x^{4} + 738530 x^{3} - 118358 x^{2} - 497699 x + 371831 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(496411927280973952950108160000000000=2^{24}\cdot 5^{10}\cdot 13^{6}\cdot 29^{4}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4235326140345022220326385714726327915762254781642914836831909929} a^{19} + \frac{1267805130129179944039459741165816917666558558859798318732670959}{4235326140345022220326385714726327915762254781642914836831909929} a^{18} - \frac{293047476880308729034848018772552887783374462453046554280668806}{4235326140345022220326385714726327915762254781642914836831909929} a^{17} + \frac{1341171064825772194969041824837154895070031594119558827799088841}{4235326140345022220326385714726327915762254781642914836831909929} a^{16} + \frac{2115238322571522643957979696042865015164862482509520789463035532}{4235326140345022220326385714726327915762254781642914836831909929} a^{15} - \frac{1219520680365925397039648988582977683260908685035721380949411583}{4235326140345022220326385714726327915762254781642914836831909929} a^{14} - \frac{865383407519223282060828134558259407158146474412506948782331672}{4235326140345022220326385714726327915762254781642914836831909929} a^{13} - \frac{1123237536824954658895454782680472742571726280947606461051593445}{4235326140345022220326385714726327915762254781642914836831909929} a^{12} + \frac{2046848143490335403657483963482137355823076385485772626974089818}{4235326140345022220326385714726327915762254781642914836831909929} a^{11} + \frac{433588513619157592465147524992155881605017525817668413470905506}{4235326140345022220326385714726327915762254781642914836831909929} a^{10} + \frac{1515620037857485814306432693870561126690555183430866772396937583}{4235326140345022220326385714726327915762254781642914836831909929} a^{9} - \frac{2085679878908605565343955349548677790918995406742965412712338785}{4235326140345022220326385714726327915762254781642914836831909929} a^{8} - \frac{1806688830953051413767379055499762808980053629417267639642740557}{4235326140345022220326385714726327915762254781642914836831909929} a^{7} - \frac{121664220017079526703725214916239815949915264874837333793563657}{4235326140345022220326385714726327915762254781642914836831909929} a^{6} - \frac{982166904909211665222287751418995426336857776315507946459863933}{4235326140345022220326385714726327915762254781642914836831909929} a^{5} - \frac{1353505354647231333435358776883720996230215050907928188835957359}{4235326140345022220326385714726327915762254781642914836831909929} a^{4} + \frac{71155317571133140888364905874678195407198809026812471397569773}{4235326140345022220326385714726327915762254781642914836831909929} a^{3} - \frac{665953640365622537124918173767773743752071892920402500686851678}{4235326140345022220326385714726327915762254781642914836831909929} a^{2} + \frac{312035678665002002076403256767445095637946690248473121360272470}{4235326140345022220326385714726327915762254781642914836831909929} a - \frac{1419871474929738180879595781036992993396031142756008669960763032}{4235326140345022220326385714726327915762254781642914836831909929}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2078876430.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 31 | Data not computed | ||||||