Normalized defining polynomial
\( x^{20} - 9 x^{19} + 44 x^{18} - 141 x^{17} + 381 x^{16} - 814 x^{15} + 438 x^{14} + 5506 x^{13} - 23992 x^{12} + 41448 x^{11} + 330 x^{10} - 139922 x^{9} + 157422 x^{8} + 448344 x^{7} - 1983912 x^{6} + 3755096 x^{5} - 4591244 x^{4} + 3841380 x^{3} - 2411536 x^{2} + 602780 x + 345220 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(496411927280973952950108160000000000=2^{24}\cdot 5^{10}\cdot 13^{6}\cdot 29^{4}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{9}$, $\frac{1}{1764084016770158800757258646733598395287467757993102248268242} a^{19} - \frac{150363216565423733790245286192443411621683743928080930139859}{882042008385079400378629323366799197643733878996551124134121} a^{18} - \frac{25629641692825465338182252074964289548737168459008672519585}{1764084016770158800757258646733598395287467757993102248268242} a^{17} + \frac{206200648544213955007988347897171475184222645083027365627443}{882042008385079400378629323366799197643733878996551124134121} a^{16} + \frac{96972076835034195495552264399330974790963529367798598405661}{1764084016770158800757258646733598395287467757993102248268242} a^{15} - \frac{131126446418175755193484940897103097609093526991185706625525}{1764084016770158800757258646733598395287467757993102248268242} a^{14} - \frac{177801277640024383743830526043150070004331908549055037793521}{1764084016770158800757258646733598395287467757993102248268242} a^{13} + \frac{182583903236728874969291478716447827511441274000946731727852}{882042008385079400378629323366799197643733878996551124134121} a^{12} + \frac{186863030344309827829756864488298505261040027066620556036030}{882042008385079400378629323366799197643733878996551124134121} a^{11} + \frac{50886253897682597646558650481337367776118043751821328318305}{882042008385079400378629323366799197643733878996551124134121} a^{10} + \frac{457149882540596411305945269847916293007035184726653268960119}{1764084016770158800757258646733598395287467757993102248268242} a^{9} + \frac{42061924415465178797949378229472186232618600964920297547585}{882042008385079400378629323366799197643733878996551124134121} a^{8} - \frac{354737338248800054293697026211829452034127191377420643604487}{882042008385079400378629323366799197643733878996551124134121} a^{7} + \frac{362800046240154469804238739974521011962387146104819287251902}{882042008385079400378629323366799197643733878996551124134121} a^{6} + \frac{303677486697427612678582626626077089287966964030933336583857}{882042008385079400378629323366799197643733878996551124134121} a^{5} - \frac{150504684107941057206924384465523174580051699887949941904586}{882042008385079400378629323366799197643733878996551124134121} a^{4} + \frac{417422791192068722411565812645239024634420258321877917310806}{882042008385079400378629323366799197643733878996551124134121} a^{3} + \frac{57424291448256782559405889564607464046750082592414082601011}{882042008385079400378629323366799197643733878996551124134121} a^{2} + \frac{420533746630019738177344404674414064939880233656413580285472}{882042008385079400378629323366799197643733878996551124134121} a - \frac{314517009352794121091672067246594247726679882820435491541695}{882042008385079400378629323366799197643733878996551124134121}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13722842007.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.6.5.4 | $x^{6} + 217$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |