Normalized defining polynomial
\( x^{20} - 2 x^{19} + 14 x^{17} - 36 x^{16} - 24 x^{15} + 76 x^{14} - 174 x^{13} - 197 x^{12} + 210 x^{11} + 34 x^{10} - 176 x^{9} + 19 x^{8} - 58 x^{7} - 100 x^{6} + 16 x^{5} + 13 x^{4} - 2 x^{3} + 10 x^{2} + 4 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49338146756019243307761664=2^{30}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{5}{11} a^{12} - \frac{2}{11} a^{11} + \frac{1}{11} a^{10} - \frac{1}{11} a^{8} + \frac{1}{11} a^{7} + \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{2}{11} a^{3} - \frac{2}{11} a^{2} - \frac{2}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{14} - \frac{5}{11} a^{12} - \frac{5}{11} a^{10} - \frac{1}{11} a^{9} - \frac{5}{11} a^{8} - \frac{5}{11} a^{7} + \frac{3}{11} a^{6} + \frac{5}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} - \frac{3}{11} a^{2} + \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{15} + \frac{3}{11} a^{12} - \frac{4}{11} a^{11} + \frac{4}{11} a^{10} - \frac{5}{11} a^{9} + \frac{1}{11} a^{8} - \frac{3}{11} a^{7} + \frac{5}{11} a^{6} + \frac{5}{11} a^{5} - \frac{4}{11} a^{3} + \frac{2}{11} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{3}{11} a^{12} - \frac{1}{11} a^{11} + \frac{3}{11} a^{10} + \frac{1}{11} a^{9} + \frac{2}{11} a^{7} + \frac{5}{11} a^{6} + \frac{2}{11} a^{5} + \frac{2}{11} a^{4} - \frac{4}{11} a^{3} - \frac{3}{11} a^{2} + \frac{5}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{17} - \frac{5}{11} a^{12} - \frac{2}{11} a^{11} - \frac{2}{11} a^{10} + \frac{5}{11} a^{8} + \frac{2}{11} a^{7} + \frac{2}{11} a^{6} + \frac{4}{11} a^{5} + \frac{2}{11} a^{4} + \frac{2}{11} a^{3} + \frac{5}{11}$, $\frac{1}{121} a^{18} + \frac{2}{121} a^{17} + \frac{4}{121} a^{16} + \frac{3}{121} a^{14} - \frac{1}{121} a^{13} - \frac{6}{121} a^{12} - \frac{29}{121} a^{11} - \frac{36}{121} a^{10} + \frac{39}{121} a^{9} - \frac{7}{121} a^{8} - \frac{52}{121} a^{7} + \frac{26}{121} a^{6} + \frac{56}{121} a^{5} - \frac{13}{121} a^{4} - \frac{18}{121} a^{3} + \frac{26}{121} a^{2} + \frac{20}{121} a - \frac{47}{121}$, $\frac{1}{33972148677841} a^{19} + \frac{117763882196}{33972148677841} a^{18} + \frac{413636325220}{33972148677841} a^{17} + \frac{1222272052372}{33972148677841} a^{16} - \frac{1145141287155}{33972148677841} a^{15} + \frac{401611167424}{33972148677841} a^{14} + \frac{1512310380232}{33972148677841} a^{13} - \frac{2289135694117}{33972148677841} a^{12} + \frac{9116397299993}{33972148677841} a^{11} + \frac{550831379436}{3088377152531} a^{10} + \frac{745377593097}{33972148677841} a^{9} + \frac{633333929291}{3088377152531} a^{8} - \frac{3156794737262}{33972148677841} a^{7} + \frac{13164755328393}{33972148677841} a^{6} + \frac{56376942606}{3088377152531} a^{5} - \frac{958196935655}{3088377152531} a^{4} + \frac{2860033257896}{33972148677841} a^{3} + \frac{12325588528600}{33972148677841} a^{2} + \frac{16534732396230}{33972148677841} a - \frac{16485588049519}{33972148677841}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90919.8145635 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5$ (as 20T23):
| A solvable group of order 80 |
| The 8 conjugacy class representatives for $C_2^4:C_5$ |
| Character table for $C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.219503494144.1, 10.2.219503494144.1, 10.6.219503494144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |