Properties

Label 20.4.49087529081...7824.1
Degree $20$
Signature $[4, 8]$
Discriminant $2^{46}\cdot 17^{8}$
Root discriminant $15.29$
Ramified primes $2, 17$
Class number $1$
Class group Trivial
Galois group 20T230

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 4, 10, -20, -14, 32, -4, -16, 58, -80, 2, 64, -44, 48, -74, 40, -3, -6, 7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 7*x^18 - 6*x^17 - 3*x^16 + 40*x^15 - 74*x^14 + 48*x^13 - 44*x^12 + 64*x^11 + 2*x^10 - 80*x^9 + 58*x^8 - 16*x^7 - 4*x^6 + 32*x^5 - 14*x^4 - 20*x^3 + 10*x^2 + 4*x - 2)
 
gp: K = bnfinit(x^20 - 2*x^19 + 7*x^18 - 6*x^17 - 3*x^16 + 40*x^15 - 74*x^14 + 48*x^13 - 44*x^12 + 64*x^11 + 2*x^10 - 80*x^9 + 58*x^8 - 16*x^7 - 4*x^6 + 32*x^5 - 14*x^4 - 20*x^3 + 10*x^2 + 4*x - 2, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 7 x^{18} - 6 x^{17} - 3 x^{16} + 40 x^{15} - 74 x^{14} + 48 x^{13} - 44 x^{12} + 64 x^{11} + 2 x^{10} - 80 x^{9} + 58 x^{8} - 16 x^{7} - 4 x^{6} + 32 x^{5} - 14 x^{4} - 20 x^{3} + 10 x^{2} + 4 x - 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(490875290811165073997824=2^{46}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{369363546771766249} a^{19} - \frac{101663811748222823}{369363546771766249} a^{18} - \frac{60929233505278003}{369363546771766249} a^{17} + \frac{124915570985415378}{369363546771766249} a^{16} + \frac{150142072110557573}{369363546771766249} a^{15} - \frac{25990967545422136}{369363546771766249} a^{14} - \frac{68423422688724413}{369363546771766249} a^{13} + \frac{107108373983441933}{369363546771766249} a^{12} - \frac{129304053147975450}{369363546771766249} a^{11} - \frac{52398816830815938}{369363546771766249} a^{10} + \frac{102888314842838891}{369363546771766249} a^{9} - \frac{115303815867189737}{369363546771766249} a^{8} - \frac{86616251776116563}{369363546771766249} a^{7} + \frac{10427491781483998}{369363546771766249} a^{6} + \frac{68623729222430400}{369363546771766249} a^{5} + \frac{40604595060387203}{369363546771766249} a^{4} - \frac{10052090281417006}{369363546771766249} a^{3} - \frac{73847299813497326}{369363546771766249} a^{2} - \frac{36887722637200068}{369363546771766249} a + \frac{151211490284861146}{369363546771766249}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13330.8204203 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T230:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1920
The 24 conjugacy class representatives for t20n230
Character table for t20n230 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 5.1.18496.1, 10.2.43789058048.1, 10.2.175156232192.1, 10.2.21894529024.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 sibling: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$17$17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.6.4.1$x^{6} + 136 x^{3} + 7803$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
17.6.4.1$x^{6} + 136 x^{3} + 7803$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$