Normalized defining polynomial
\( x^{20} - 3 x^{19} - 9 x^{18} + 27 x^{17} + 9 x^{16} - 36 x^{15} + 135 x^{14} + 246 x^{13} - 2445 x^{12} - 1209 x^{11} + 18903 x^{10} - 28629 x^{9} + 25146 x^{8} - 42075 x^{7} - 9099 x^{6} + 183780 x^{5} - 285120 x^{4} + 371223 x^{3} - 777600 x^{2} + 1160244 x - 274401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4841421802104669181474651611328125=3^{18}\cdot 5^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{18} a^{15} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2}$, $\frac{1}{18} a^{16} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a$, $\frac{1}{18} a^{17} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{36} a^{18} - \frac{1}{36} a^{17} - \frac{1}{12} a^{14} - \frac{1}{12} a^{10} - \frac{5}{12} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8607558858597236830021194103721140849464041221752} a^{19} + \frac{39643778148941392247163754646386556941887749221}{4303779429298618415010597051860570424732020610876} a^{18} + \frac{19804795598305856853531343116559717892440629959}{2869186286199078943340398034573713616488013740584} a^{17} + \frac{13167852102234654711384365128485857779563203047}{1075944857324654603752649262965142606183005152719} a^{16} + \frac{44166604173874019937280538424543687605424141251}{2869186286199078943340398034573713616488013740584} a^{15} + \frac{1027790003452786462206103198974779627312726323}{168775663894063467255317531445512565675765514152} a^{14} - \frac{53895720311452285017440797207422094355821590655}{717296571549769735835099508643428404122003435146} a^{13} - \frac{24750037309563614410296071465532948461236009283}{478197714366513157223399672428952269414668956764} a^{12} - \frac{220199486111545493504371333346778904896121215905}{2869186286199078943340398034573713616488013740584} a^{11} + \frac{12206422521057078520449761334783639607997557965}{119549428591628289305849918107238067353667239191} a^{10} + \frac{475790582441501581014731122864023597143833120477}{2869186286199078943340398034573713616488013740584} a^{9} + \frac{70392876374667996530017286392404139772214909953}{1434593143099539471670199017286856808244006870292} a^{8} + \frac{140391662632232814948535529975483410267220301650}{358648285774884867917549754321714202061001717573} a^{7} + \frac{862303499040402894807436043682116977214562316103}{2869186286199078943340398034573713616488013740584} a^{6} + \frac{9064444615558214315987338345526613907639545415}{478197714366513157223399672428952269414668956764} a^{5} + \frac{225023272604223750514146082415054698534259225265}{478197714366513157223399672428952269414668956764} a^{4} - \frac{6435701590865350760421243010627635984359808687}{28129277315677244542552921907585427612627585692} a^{3} - \frac{327920104005041342241472802712838176278583983939}{956395428733026314446799344857904538829337913528} a^{2} - \frac{1411356089078413237984280970839942379935982099}{956395428733026314446799344857904538829337913528} a - \frac{115656820019865516156550231735310321647482974883}{956395428733026314446799344857904538829337913528}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1022414654.5228317 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.19773.1, 5.1.1711125.1, 10.2.38063333953125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||