Normalized defining polynomial
\( x^{20} - 4 x^{18} + 114 x^{16} + 672 x^{14} + 1704 x^{12} - 5856 x^{10} + 7056 x^{8} - 4992 x^{6} + 4176 x^{4} - 1600 x^{2} + 160 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47330370277129322496000000000000000=2^{55}\cdot 3^{16}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{8} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{8} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{64} a^{8} - \frac{1}{16} a^{4} - \frac{1}{2} a^{2} + \frac{5}{16}$, $\frac{1}{64} a^{9} - \frac{1}{16} a^{5} - \frac{1}{2} a^{3} + \frac{5}{16} a$, $\frac{1}{192} a^{10} + \frac{1}{192} a^{8} + \frac{1}{48} a^{6} - \frac{1}{48} a^{4} + \frac{17}{48} a^{2} + \frac{5}{48}$, $\frac{1}{192} a^{11} + \frac{1}{192} a^{9} + \frac{1}{48} a^{7} - \frac{1}{48} a^{5} + \frac{17}{48} a^{3} + \frac{5}{48} a$, $\frac{1}{1536} a^{12} - \frac{1}{384} a^{10} - \frac{5}{768} a^{8} + \frac{1}{32} a^{6} - \frac{5}{384} a^{4} + \frac{31}{96} a^{2} + \frac{1}{192}$, $\frac{1}{1536} a^{13} - \frac{1}{384} a^{11} - \frac{5}{768} a^{9} + \frac{1}{32} a^{7} - \frac{5}{384} a^{5} + \frac{31}{96} a^{3} + \frac{1}{192} a$, $\frac{1}{1536} a^{14} - \frac{1}{768} a^{10} + \frac{1}{192} a^{8} + \frac{19}{384} a^{6} + \frac{1}{48} a^{4} - \frac{25}{64} a^{2} - \frac{23}{48}$, $\frac{1}{1536} a^{15} - \frac{1}{768} a^{11} + \frac{1}{192} a^{9} + \frac{19}{384} a^{7} + \frac{1}{48} a^{5} - \frac{25}{64} a^{3} - \frac{23}{48} a$, $\frac{1}{36864} a^{16} - \frac{1}{4608} a^{14} - \frac{1}{4608} a^{12} + \frac{1}{2304} a^{10} + \frac{23}{4608} a^{8} - \frac{67}{1152} a^{6} + \frac{11}{1152} a^{4} + \frac{283}{576} a^{2} + \frac{697}{2304}$, $\frac{1}{36864} a^{17} - \frac{1}{4608} a^{15} - \frac{1}{4608} a^{13} + \frac{1}{2304} a^{11} + \frac{23}{4608} a^{9} - \frac{67}{1152} a^{7} + \frac{11}{1152} a^{5} + \frac{283}{576} a^{3} + \frac{697}{2304} a$, $\frac{1}{36864} a^{18} - \frac{1}{1536} a^{10} + \frac{1}{192} a^{6} + \frac{1}{24} a^{4} - \frac{75}{256} a^{2} + \frac{11}{36}$, $\frac{1}{36864} a^{19} - \frac{1}{1536} a^{11} + \frac{1}{192} a^{7} + \frac{1}{24} a^{5} - \frac{75}{256} a^{3} + \frac{11}{36} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10084395858.217299 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.4.256000.1, 5.1.648000.1, 10.2.16796160000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||