Properties

Label 20.4.46484025093...4237.1
Degree $20$
Signature $[4, 8]$
Discriminant $11^{10}\cdot 13^{11}$
Root discriminant $13.59$
Ramified primes $11, 13$
Class number $1$
Class group Trivial
Galois group 20T144

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 2, -5, -2, 22, -65, 134, -175, 164, -83, -18, 33, 4, -3, -30, 42, -29, 8, 3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 + 3*x^18 + 8*x^17 - 29*x^16 + 42*x^15 - 30*x^14 - 3*x^13 + 4*x^12 + 33*x^11 - 18*x^10 - 83*x^9 + 164*x^8 - 175*x^7 + 134*x^6 - 65*x^5 + 22*x^4 - 2*x^3 - 5*x^2 + 2*x - 1)
 
gp: K = bnfinit(x^20 - 3*x^19 + 3*x^18 + 8*x^17 - 29*x^16 + 42*x^15 - 30*x^14 - 3*x^13 + 4*x^12 + 33*x^11 - 18*x^10 - 83*x^9 + 164*x^8 - 175*x^7 + 134*x^6 - 65*x^5 + 22*x^4 - 2*x^3 - 5*x^2 + 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} + 3 x^{18} + 8 x^{17} - 29 x^{16} + 42 x^{15} - 30 x^{14} - 3 x^{13} + 4 x^{12} + 33 x^{11} - 18 x^{10} - 83 x^{9} + 164 x^{8} - 175 x^{7} + 134 x^{6} - 65 x^{5} + 22 x^{4} - 2 x^{3} - 5 x^{2} + 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(46484025093233137504237=11^{10}\cdot 13^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{43526487718343345} a^{19} - \frac{482504410765021}{43526487718343345} a^{18} + \frac{81098009537937}{195186043580015} a^{17} + \frac{2081651783492699}{8705297543668669} a^{16} - \frac{4663756242651664}{43526487718343345} a^{15} - \frac{21448994739473466}{43526487718343345} a^{14} - \frac{5794654269292907}{43526487718343345} a^{13} - \frac{3432883551947622}{43526487718343345} a^{12} - \frac{134524367692091}{8705297543668669} a^{11} - \frac{17012550815242907}{43526487718343345} a^{10} - \frac{432170495275166}{2560381630490785} a^{9} + \frac{3006071074541433}{43526487718343345} a^{8} + \frac{1915901469735616}{8705297543668669} a^{7} + \frac{50368858737969}{512076326098157} a^{6} + \frac{12473295982368124}{43526487718343345} a^{5} - \frac{4683228334649392}{43526487718343345} a^{4} - \frac{21650495821338452}{43526487718343345} a^{3} + \frac{14766167163459754}{43526487718343345} a^{2} + \frac{18650346324097388}{43526487718343345} a + \frac{11019749713435898}{43526487718343345}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1809.67187366 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T144:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 640
The 40 conjugacy class representatives for t20n144
Character table for t20n144 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 5.1.20449.1, 10.2.5436100813.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ $20$ R R ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ $20$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ $20$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.6.1$x^{8} + 143 x^{4} + 5929$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
$13$13.4.3.1$x^{4} - 13$$4$$1$$3$$C_4$$[\ ]_{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$