Normalized defining polynomial
\( x^{20} - 10 x^{19} + 39 x^{18} - 66 x^{17} + 55 x^{16} - 236 x^{15} + 876 x^{14} - 778 x^{13} - 921 x^{12} - 844 x^{11} + 5685 x^{10} + 5394 x^{9} - 19361 x^{8} - 13338 x^{7} + 25610 x^{6} + 54392 x^{5} - 13091 x^{4} - 122148 x^{3} - 60515 x^{2} + 139256 x + 118469 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(460806078520572792990650790313984=2^{24}\cdot 13^{14}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{14} + \frac{3}{13} a^{13} + \frac{5}{26} a^{12} - \frac{2}{13} a^{11} + \frac{3}{26} a^{10} - \frac{1}{2} a^{9} - \frac{6}{13} a^{8} + \frac{2}{13} a^{7} - \frac{3}{26} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{15} - \frac{5}{26} a^{13} + \frac{5}{26} a^{12} + \frac{1}{26} a^{11} - \frac{5}{26} a^{10} + \frac{1}{26} a^{9} + \frac{11}{26} a^{8} - \frac{1}{26} a^{7} + \frac{5}{26} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{26} a^{16} - \frac{2}{13} a^{13} + \frac{1}{26} a^{11} + \frac{3}{26} a^{10} + \frac{11}{26} a^{9} - \frac{9}{26} a^{8} - \frac{1}{26} a^{7} + \frac{11}{26} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{17} - \frac{1}{13} a^{13} - \frac{5}{26} a^{12} - \frac{3}{26} a^{10} - \frac{9}{26} a^{9} - \frac{5}{13} a^{8} - \frac{6}{13} a^{7} + \frac{1}{26} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{21260247573477770} a^{18} - \frac{9}{21260247573477770} a^{17} - \frac{307666483766233}{21260247573477770} a^{16} + \frac{8226380882633}{21260247573477770} a^{15} + \frac{11316292150447}{1932749779407070} a^{14} + \frac{19203325781137}{1932749779407070} a^{13} - \frac{1275526438927479}{10630123786738885} a^{12} - \frac{4646047329017007}{21260247573477770} a^{11} - \frac{1691187475481379}{21260247573477770} a^{10} - \frac{7727891171896157}{21260247573477770} a^{9} + \frac{132884949198388}{2126024757347777} a^{8} + \frac{1814140120482127}{4252049514695554} a^{7} + \frac{417449176189172}{10630123786738885} a^{6} - \frac{30271091720169}{74336529977195} a^{5} + \frac{330440908386873}{1635403659498290} a^{4} - \frac{394368099165732}{817701829749145} a^{3} + \frac{69942265820969}{163540365949829} a^{2} + \frac{9161821957538}{817701829749145} a + \frac{402387869529673}{817701829749145}$, $\frac{1}{8675945610527528814910} a^{19} + \frac{102016}{4337972805263764407455} a^{18} - \frac{51612829458421885857}{8675945610527528814910} a^{17} - \frac{12460300413509791837}{867594561052752881491} a^{16} - \frac{1506952541603501302}{867594561052752881491} a^{15} - \frac{2786242004231739421}{788722328229775346810} a^{14} - \frac{305132098205865109753}{4337972805263764407455} a^{13} - \frac{16322941767212663430}{66738043157904067807} a^{12} - \frac{24229926601305831548}{4337972805263764407455} a^{11} + \frac{1030124266379776369999}{8675945610527528814910} a^{10} - \frac{2277547979988177580627}{8675945610527528814910} a^{9} + \frac{214897084694569604385}{867594561052752881491} a^{8} - \frac{62608320816958461197}{667380431579040678070} a^{7} - \frac{320958653692298029}{10267391255062164278} a^{6} + \frac{20168248873858960877}{66738043157904067807} a^{5} + \frac{109466929492178475117}{333690215789520339035} a^{4} - \frac{122502509572460315182}{333690215789520339035} a^{3} - \frac{63033837255568344567}{333690215789520339035} a^{2} + \frac{23501145598325099319}{51336956275310821390} a + \frac{4200960597733673361}{25668478137655410695}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 422552818.542 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 18 conjugacy class representatives for t20n226 |
| Character table for t20n226 |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1, 10.2.1651261089746944.1, 10.2.21466394166710272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |