Normalized defining polynomial
\( x^{20} - 6 x^{19} - 4 x^{18} + 74 x^{17} - 318 x^{15} - 193 x^{14} + 612 x^{13} + 1819 x^{12} + 254 x^{11} + \cdots - 3 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(4599651543326335737037335822336\)
\(\medspace = 2^{20}\cdot 3^{8}\cdot 401^{8}\)
|
| |
| Root discriminant: | \(34.13\) |
| |
| Galois root discriminant: | $2^{31/16}3^{3/4}401^{1/2}\approx 174.84722497415262$ | ||
| Ramified primes: |
\(2\), \(3\), \(401\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{139}a^{18}+\frac{21}{139}a^{17}+\frac{68}{139}a^{16}-\frac{6}{139}a^{15}-\frac{45}{139}a^{14}+\frac{47}{139}a^{13}-\frac{1}{139}a^{12}-\frac{23}{139}a^{11}+\frac{25}{139}a^{10}-\frac{57}{139}a^{9}-\frac{52}{139}a^{8}-\frac{11}{139}a^{7}+\frac{48}{139}a^{6}+\frac{18}{139}a^{5}+\frac{31}{139}a^{4}-\frac{33}{139}a^{3}+\frac{36}{139}a^{2}+\frac{16}{139}a+\frac{16}{139}$, $\frac{1}{47\cdots 77}a^{19}-\frac{57\cdots 76}{47\cdots 77}a^{18}-\frac{28\cdots 16}{47\cdots 77}a^{17}-\frac{17\cdots 77}{47\cdots 77}a^{16}+\frac{10\cdots 66}{47\cdots 77}a^{15}-\frac{67\cdots 35}{47\cdots 77}a^{14}+\frac{53\cdots 25}{47\cdots 77}a^{13}+\frac{64\cdots 85}{47\cdots 77}a^{12}-\frac{14\cdots 48}{47\cdots 77}a^{11}+\frac{11\cdots 07}{47\cdots 77}a^{10}+\frac{14\cdots 57}{47\cdots 77}a^{9}+\frac{21\cdots 23}{47\cdots 77}a^{8}+\frac{12\cdots 36}{47\cdots 77}a^{7}+\frac{12\cdots 28}{47\cdots 77}a^{6}-\frac{30\cdots 57}{47\cdots 77}a^{5}-\frac{50\cdots 41}{47\cdots 77}a^{4}-\frac{10\cdots 94}{47\cdots 77}a^{3}-\frac{64\cdots 25}{47\cdots 77}a^{2}-\frac{11\cdots 08}{47\cdots 77}a-\frac{19\cdots 91}{47\cdots 77}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{25\cdots 58}{48\cdots 41}a^{19}-\frac{15\cdots 25}{48\cdots 41}a^{18}-\frac{72\cdots 98}{48\cdots 41}a^{17}+\frac{19\cdots 30}{48\cdots 41}a^{16}-\frac{38\cdots 14}{48\cdots 41}a^{15}-\frac{82\cdots 75}{48\cdots 41}a^{14}-\frac{31\cdots 88}{48\cdots 41}a^{13}+\frac{17\cdots 45}{48\cdots 41}a^{12}+\frac{43\cdots 26}{48\cdots 41}a^{11}-\frac{42\cdots 30}{48\cdots 41}a^{10}-\frac{75\cdots 90}{48\cdots 41}a^{9}-\frac{15\cdots 15}{48\cdots 41}a^{8}-\frac{29\cdots 34}{48\cdots 41}a^{7}+\frac{27\cdots 24}{48\cdots 41}a^{6}+\frac{67\cdots 28}{48\cdots 41}a^{5}-\frac{21\cdots 75}{48\cdots 41}a^{4}+\frac{21\cdots 94}{48\cdots 41}a^{3}-\frac{14\cdots 85}{48\cdots 41}a^{2}+\frac{20\cdots 50}{48\cdots 41}a+\frac{28\cdots 76}{48\cdots 41}$, $\frac{25\cdots 58}{48\cdots 41}a^{19}-\frac{15\cdots 25}{48\cdots 41}a^{18}-\frac{72\cdots 98}{48\cdots 41}a^{17}+\frac{19\cdots 30}{48\cdots 41}a^{16}-\frac{38\cdots 14}{48\cdots 41}a^{15}-\frac{82\cdots 75}{48\cdots 41}a^{14}-\frac{31\cdots 88}{48\cdots 41}a^{13}+\frac{17\cdots 45}{48\cdots 41}a^{12}+\frac{43\cdots 26}{48\cdots 41}a^{11}-\frac{42\cdots 30}{48\cdots 41}a^{10}-\frac{75\cdots 90}{48\cdots 41}a^{9}-\frac{15\cdots 15}{48\cdots 41}a^{8}-\frac{29\cdots 34}{48\cdots 41}a^{7}+\frac{27\cdots 24}{48\cdots 41}a^{6}+\frac{67\cdots 28}{48\cdots 41}a^{5}-\frac{21\cdots 75}{48\cdots 41}a^{4}+\frac{21\cdots 94}{48\cdots 41}a^{3}-\frac{14\cdots 85}{48\cdots 41}a^{2}+\frac{20\cdots 50}{48\cdots 41}a+\frac{77\cdots 17}{48\cdots 41}$, $\frac{60\cdots 86}{47\cdots 77}a^{19}-\frac{31\cdots 56}{47\cdots 77}a^{18}-\frac{58\cdots 73}{47\cdots 77}a^{17}+\frac{44\cdots 52}{47\cdots 77}a^{16}+\frac{41\cdots 52}{47\cdots 77}a^{15}-\frac{21\cdots 18}{47\cdots 77}a^{14}-\frac{30\cdots 52}{47\cdots 77}a^{13}+\frac{34\cdots 48}{47\cdots 77}a^{12}+\frac{15\cdots 15}{47\cdots 77}a^{11}+\frac{10\cdots 01}{47\cdots 77}a^{10}-\frac{20\cdots 61}{47\cdots 77}a^{9}-\frac{25\cdots 66}{47\cdots 77}a^{8}-\frac{96\cdots 06}{47\cdots 77}a^{7}-\frac{35\cdots 23}{47\cdots 77}a^{6}+\frac{16\cdots 98}{47\cdots 77}a^{5}+\frac{15\cdots 71}{47\cdots 77}a^{4}+\frac{86\cdots 86}{47\cdots 77}a^{3}+\frac{71\cdots 30}{47\cdots 77}a^{2}-\frac{63\cdots 45}{47\cdots 77}a-\frac{18\cdots 93}{47\cdots 77}$, $\frac{89\cdots 29}{47\cdots 77}a^{19}-\frac{53\cdots 79}{47\cdots 77}a^{18}-\frac{36\cdots 17}{47\cdots 77}a^{17}+\frac{65\cdots 16}{47\cdots 77}a^{16}+\frac{60\cdots 47}{47\cdots 77}a^{15}-\frac{28\cdots 30}{47\cdots 77}a^{14}-\frac{17\cdots 52}{47\cdots 77}a^{13}+\frac{53\cdots 30}{47\cdots 77}a^{12}+\frac{16\cdots 12}{47\cdots 77}a^{11}+\frac{25\cdots 84}{47\cdots 77}a^{10}-\frac{24\cdots 46}{47\cdots 77}a^{9}-\frac{11\cdots 95}{47\cdots 77}a^{8}-\frac{14\cdots 78}{47\cdots 77}a^{7}-\frac{18\cdots 52}{47\cdots 77}a^{6}+\frac{22\cdots 38}{47\cdots 77}a^{5}-\frac{26\cdots 17}{47\cdots 77}a^{4}+\frac{91\cdots 48}{47\cdots 77}a^{3}-\frac{43\cdots 09}{47\cdots 77}a^{2}+\frac{68\cdots 48}{47\cdots 77}a-\frac{24\cdots 12}{47\cdots 77}$, $\frac{73\cdots 51}{47\cdots 77}a^{19}-\frac{34\cdots 95}{47\cdots 77}a^{18}-\frac{90\cdots 95}{47\cdots 77}a^{17}+\frac{51\cdots 03}{47\cdots 77}a^{16}+\frac{74\cdots 32}{47\cdots 77}a^{15}-\frac{24\cdots 75}{47\cdots 77}a^{14}-\frac{45\cdots 29}{47\cdots 77}a^{13}+\frac{29\cdots 32}{47\cdots 77}a^{12}+\frac{19\cdots 72}{47\cdots 77}a^{11}+\frac{19\cdots 67}{47\cdots 77}a^{10}-\frac{20\cdots 24}{47\cdots 77}a^{9}-\frac{36\cdots 73}{47\cdots 77}a^{8}-\frac{20\cdots 41}{47\cdots 77}a^{7}-\frac{16\cdots 82}{47\cdots 77}a^{6}+\frac{17\cdots 06}{47\cdots 77}a^{5}+\frac{21\cdots 66}{47\cdots 77}a^{4}+\frac{14\cdots 51}{47\cdots 77}a^{3}+\frac{68\cdots 84}{47\cdots 77}a^{2}-\frac{34\cdots 96}{47\cdots 77}a+\frac{46\cdots 07}{47\cdots 77}$, $\frac{24\cdots 28}{48\cdots 41}a^{19}-\frac{14\cdots 95}{48\cdots 41}a^{18}-\frac{10\cdots 10}{48\cdots 41}a^{17}+\frac{17\cdots 39}{48\cdots 41}a^{16}+\frac{85\cdots 70}{48\cdots 41}a^{15}-\frac{75\cdots 84}{48\cdots 41}a^{14}-\frac{51\cdots 48}{48\cdots 41}a^{13}+\frac{13\cdots 87}{48\cdots 41}a^{12}+\frac{44\cdots 14}{48\cdots 41}a^{11}+\frac{10\cdots 81}{48\cdots 41}a^{10}-\frac{63\cdots 38}{48\cdots 41}a^{9}-\frac{32\cdots 51}{48\cdots 41}a^{8}-\frac{48\cdots 12}{48\cdots 41}a^{7}-\frac{10\cdots 75}{48\cdots 41}a^{6}+\frac{58\cdots 84}{48\cdots 41}a^{5}-\frac{54\cdots 17}{48\cdots 41}a^{4}+\frac{28\cdots 84}{48\cdots 41}a^{3}-\frac{11\cdots 49}{48\cdots 41}a^{2}+\frac{22\cdots 64}{48\cdots 41}a-\frac{17\cdots 05}{48\cdots 41}$, $\frac{12\cdots 12}{48\cdots 41}a^{19}-\frac{85\cdots 74}{48\cdots 41}a^{18}+\frac{64\cdots 98}{48\cdots 41}a^{17}+\frac{10\cdots 70}{48\cdots 41}a^{16}-\frac{73\cdots 10}{48\cdots 41}a^{15}-\frac{43\cdots 05}{48\cdots 41}a^{14}+\frac{79\cdots 50}{48\cdots 41}a^{13}+\frac{11\cdots 50}{48\cdots 41}a^{12}+\frac{17\cdots 48}{48\cdots 41}a^{11}-\frac{18\cdots 38}{48\cdots 41}a^{10}-\frac{47\cdots 80}{48\cdots 41}a^{9}+\frac{11\cdots 04}{48\cdots 41}a^{8}+\frac{53\cdots 60}{48\cdots 41}a^{7}+\frac{21\cdots 39}{48\cdots 41}a^{6}+\frac{42\cdots 64}{48\cdots 41}a^{5}-\frac{28\cdots 69}{48\cdots 41}a^{4}+\frac{38\cdots 78}{48\cdots 41}a^{3}-\frac{14\cdots 08}{48\cdots 41}a^{2}+\frac{10\cdots 24}{48\cdots 41}a+\frac{54\cdots 75}{48\cdots 41}$, $\frac{34\cdots 06}{47\cdots 77}a^{19}-\frac{21\cdots 44}{47\cdots 77}a^{18}-\frac{10\cdots 11}{47\cdots 77}a^{17}+\frac{26\cdots 28}{47\cdots 77}a^{16}-\frac{44\cdots 43}{47\cdots 77}a^{15}-\frac{11\cdots 05}{47\cdots 77}a^{14}-\frac{46\cdots 45}{47\cdots 77}a^{13}+\frac{23\cdots 37}{47\cdots 77}a^{12}+\frac{59\cdots 86}{47\cdots 77}a^{11}-\frac{50\cdots 02}{47\cdots 77}a^{10}-\frac{10\cdots 53}{47\cdots 77}a^{9}-\frac{25\cdots 11}{47\cdots 77}a^{8}-\frac{36\cdots 48}{47\cdots 77}a^{7}+\frac{61\cdots 67}{47\cdots 77}a^{6}+\frac{93\cdots 69}{47\cdots 77}a^{5}-\frac{27\cdots 61}{47\cdots 77}a^{4}+\frac{25\cdots 46}{47\cdots 77}a^{3}-\frac{19\cdots 77}{47\cdots 77}a^{2}+\frac{25\cdots 26}{47\cdots 77}a+\frac{98\cdots 00}{47\cdots 77}$, $\frac{38\cdots 93}{47\cdots 77}a^{19}-\frac{23\cdots 51}{47\cdots 77}a^{18}-\frac{14\cdots 54}{47\cdots 77}a^{17}+\frac{28\cdots 40}{47\cdots 77}a^{16}-\frac{11\cdots 50}{47\cdots 77}a^{15}-\frac{12\cdots 13}{47\cdots 77}a^{14}-\frac{68\cdots 49}{47\cdots 77}a^{13}+\frac{24\cdots 31}{47\cdots 77}a^{12}+\frac{69\cdots 89}{47\cdots 77}a^{11}+\frac{54\cdots 81}{47\cdots 77}a^{10}-\frac{11\cdots 52}{47\cdots 77}a^{9}-\frac{41\cdots 87}{47\cdots 77}a^{8}-\frac{54\cdots 37}{47\cdots 77}a^{7}-\frac{49\cdots 93}{47\cdots 77}a^{6}+\frac{10\cdots 32}{47\cdots 77}a^{5}-\frac{16\cdots 30}{47\cdots 77}a^{4}+\frac{34\cdots 10}{47\cdots 77}a^{3}-\frac{18\cdots 06}{47\cdots 77}a^{2}+\frac{21\cdots 63}{47\cdots 77}a-\frac{72\cdots 99}{47\cdots 77}$, $\frac{37\cdots 40}{47\cdots 77}a^{19}-\frac{21\cdots 20}{47\cdots 77}a^{18}-\frac{19\cdots 90}{47\cdots 77}a^{17}+\frac{27\cdots 30}{47\cdots 77}a^{16}+\frac{62\cdots 33}{47\cdots 77}a^{15}-\frac{11\cdots 53}{47\cdots 77}a^{14}-\frac{98\cdots 50}{47\cdots 77}a^{13}+\frac{19\cdots 85}{47\cdots 77}a^{12}+\frac{71\cdots 32}{47\cdots 77}a^{11}+\frac{28\cdots 38}{47\cdots 77}a^{10}-\frac{91\cdots 61}{47\cdots 77}a^{9}-\frac{64\cdots 93}{47\cdots 77}a^{8}-\frac{87\cdots 33}{47\cdots 77}a^{7}-\frac{36\cdots 34}{47\cdots 77}a^{6}+\frac{82\cdots 21}{47\cdots 77}a^{5}+\frac{42\cdots 22}{47\cdots 77}a^{4}+\frac{45\cdots 45}{47\cdots 77}a^{3}-\frac{44\cdots 91}{47\cdots 77}a^{2}+\frac{20\cdots 78}{47\cdots 77}a-\frac{61\cdots 89}{47\cdots 77}$, $\frac{10\cdots 80}{47\cdots 77}a^{19}-\frac{61\cdots 19}{47\cdots 77}a^{18}-\frac{35\cdots 05}{47\cdots 77}a^{17}+\frac{76\cdots 18}{47\cdots 77}a^{16}-\frac{75\cdots 85}{47\cdots 77}a^{15}-\frac{33\cdots 30}{47\cdots 77}a^{14}-\frac{16\cdots 09}{47\cdots 77}a^{13}+\frac{71\cdots 72}{47\cdots 77}a^{12}+\frac{18\cdots 64}{47\cdots 77}a^{11}-\frac{92\cdots 92}{47\cdots 77}a^{10}-\frac{32\cdots 23}{47\cdots 77}a^{9}-\frac{99\cdots 56}{47\cdots 77}a^{8}-\frac{81\cdots 50}{47\cdots 77}a^{7}+\frac{34\cdots 39}{47\cdots 77}a^{6}+\frac{27\cdots 53}{47\cdots 77}a^{5}-\frac{63\cdots 86}{47\cdots 77}a^{4}+\frac{47\cdots 28}{47\cdots 77}a^{3}-\frac{55\cdots 32}{47\cdots 77}a^{2}+\frac{60\cdots 76}{47\cdots 77}a+\frac{11\cdots 05}{47\cdots 77}$
|
| |
| Regulator: | \( 28351202.0412 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 28351202.0412 \cdot 2}{2\cdot\sqrt{4599651543326335737037335822336}}\cr\approx \mathstrut & 0.513769052500 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.C_2\wr D_5$ (as 20T853):
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for $C_2^9.C_2\wr D_5$ |
| Character table for $C_2^9.C_2\wr D_5$ |
Intermediate fields
| 5.5.160801.1, 10.8.238297758114816.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.2.4491847210279624743200523264.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.10.0.1}{10} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.5.0.1}{5} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{7}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }^{4}$ | ${\href{/padicField/43.10.0.1}{10} }^{2}$ | ${\href{/padicField/47.10.0.1}{10} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.2.10a3.1 | $x^{10} + 4 x^{7} + 4 x^{5} + 3 x^{4} + 6 x^{2} + 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $$[2, 2, 2, 2, 2]^{5}$$ |
| 2.5.2.10a3.1 | $x^{10} + 4 x^{7} + 4 x^{5} + 3 x^{4} + 6 x^{2} + 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $$[2, 2, 2, 2, 2]^{5}$$ | |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.8.1.0a1.1 | $x^{8} + 2 x^{5} + x^{4} + 2 x^{2} + 2 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(401\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |