Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 20 x^{17} + 71 x^{16} - 218 x^{15} + 246 x^{14} - 202 x^{13} + 648 x^{12} - 926 x^{11} - 138 x^{10} + 1338 x^{9} + 896 x^{8} - 846 x^{7} - 8502 x^{6} + 16842 x^{5} - 13793 x^{4} + 5786 x^{3} - 1200 x^{2} + 90 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(456539463464244864640000000000=2^{16}\cdot 5^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{5}{12} a^{4} - \frac{1}{12} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{12}$, $\frac{1}{120} a^{15} + \frac{1}{40} a^{14} - \frac{1}{8} a^{13} + \frac{1}{24} a^{12} - \frac{3}{40} a^{11} - \frac{3}{40} a^{10} - \frac{7}{40} a^{9} - \frac{7}{120} a^{8} - \frac{1}{120} a^{7} - \frac{19}{120} a^{6} + \frac{7}{120} a^{5} + \frac{9}{40} a^{4} + \frac{17}{120} a^{3} + \frac{3}{40} a^{2} - \frac{59}{120} a + \frac{31}{120}$, $\frac{1}{360} a^{16} - \frac{1}{360} a^{15} - \frac{7}{360} a^{14} - \frac{1}{24} a^{13} - \frac{1}{40} a^{12} - \frac{43}{360} a^{11} - \frac{7}{72} a^{10} + \frac{67}{360} a^{9} - \frac{23}{360} a^{8} - \frac{5}{24} a^{7} + \frac{1}{120} a^{6} - \frac{1}{360} a^{5} + \frac{169}{360} a^{4} - \frac{169}{360} a^{3} + \frac{35}{72} a^{2} - \frac{41}{120} a - \frac{37}{180}$, $\frac{1}{3600} a^{17} - \frac{1}{1200} a^{16} + \frac{1}{360} a^{15} - \frac{19}{900} a^{14} + \frac{31}{600} a^{13} - \frac{17}{180} a^{12} - \frac{49}{600} a^{11} + \frac{2}{225} a^{10} - \frac{29}{450} a^{9} + \frac{353}{1800} a^{8} + \frac{113}{600} a^{7} - \frac{223}{900} a^{6} + \frac{61}{600} a^{5} + \frac{139}{300} a^{4} + \frac{193}{600} a^{3} + \frac{7}{225} a^{2} + \frac{1087}{3600} a + \frac{1753}{3600}$, $\frac{1}{54000} a^{18} + \frac{1}{10800} a^{17} - \frac{1}{1000} a^{16} + \frac{37}{27000} a^{15} - \frac{313}{13500} a^{14} - \frac{1901}{27000} a^{13} - \frac{344}{3375} a^{12} - \frac{73}{600} a^{11} - \frac{1523}{27000} a^{10} + \frac{527}{2700} a^{9} - \frac{191}{13500} a^{8} + \frac{5551}{27000} a^{7} - \frac{583}{2700} a^{6} + \frac{173}{27000} a^{5} - \frac{2681}{6750} a^{4} - \frac{6827}{27000} a^{3} + \frac{9653}{54000} a^{2} + \frac{2911}{6000} a + \frac{2957}{27000}$, $\frac{1}{14501765084958000} a^{19} + \frac{1429885679}{181272063561975} a^{18} - \frac{797716160197}{7250882542479000} a^{17} + \frac{18668935940459}{14501765084958000} a^{16} - \frac{5233809052507}{2416960847493000} a^{15} + \frac{50232473164909}{1208480423746500} a^{14} - \frac{115607587409537}{7250882542479000} a^{13} + \frac{81932285601421}{725088254247900} a^{12} + \frac{34899418148354}{906360317809875} a^{11} + \frac{6689968972084}{181272063561975} a^{10} - \frac{119568640890589}{2416960847493000} a^{9} + \frac{296638362085301}{7250882542479000} a^{8} - \frac{15281122901807}{290035301699160} a^{7} + \frac{36315013284091}{402826807915500} a^{6} + \frac{1674161346606701}{7250882542479000} a^{5} + \frac{269461171192063}{1208480423746500} a^{4} + \frac{988466624850541}{4833921694986000} a^{3} - \frac{482444088451567}{1812720635619750} a^{2} + \frac{321662292131843}{1812720635619750} a + \frac{1117627972876903}{2900353016991600}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46607660.7666 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{305}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{61})\), 10.2.5405416326400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||