Normalized defining polynomial
\( x^{20} - 9 x^{19} + 34 x^{18} - 67 x^{17} + 66 x^{16} + 11 x^{15} - 408 x^{14} + 2049 x^{13} - 5479 x^{12} + 6738 x^{11} + 3064 x^{10} - 27034 x^{9} + 56319 x^{8} - 60333 x^{7} - 20328 x^{6} + 149377 x^{5} - 65918 x^{4} - 107895 x^{3} - 168442 x^{2} + 346539 x - 18749 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(456539463464244864640000000000=2^{16}\cdot 5^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{3}{16} a^{12} - \frac{3}{8} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{7}{16} a^{4} + \frac{7}{16} a^{3} - \frac{1}{2} a^{2} + \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{4} a^{13} - \frac{1}{16} a^{12} - \frac{1}{2} a^{10} + \frac{3}{8} a^{9} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{5}{16} a^{5} - \frac{1}{8} a^{4} + \frac{7}{16} a^{3} - \frac{1}{16} a^{2} - \frac{1}{8} a + \frac{7}{16}$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{17} - \frac{1}{32} a^{16} - \frac{3}{32} a^{14} - \frac{5}{32} a^{13} + \frac{1}{32} a^{12} - \frac{1}{2} a^{11} - \frac{5}{16} a^{10} - \frac{7}{16} a^{9} + \frac{3}{16} a^{8} - \frac{1}{2} a^{7} + \frac{13}{32} a^{6} - \frac{5}{32} a^{5} + \frac{1}{32} a^{4} + \frac{7}{32} a^{2} - \frac{7}{32} a - \frac{15}{32}$, $\frac{1}{127776651782698451689488268582866989600581723552} a^{19} + \frac{178886309295460021899971784754151179048987405}{127776651782698451689488268582866989600581723552} a^{18} - \frac{1407190520829112059148369143102952267521865673}{127776651782698451689488268582866989600581723552} a^{17} + \frac{249452747051297860795632070382729384145676539}{63888325891349225844744134291433494800290861776} a^{16} - \frac{7031453620336255192486854563334150550909136045}{127776651782698451689488268582866989600581723552} a^{15} - \frac{14966555938470506149484907774959171179814273093}{127776651782698451689488268582866989600581723552} a^{14} - \frac{18019646740957947018027454166153491323837913873}{127776651782698451689488268582866989600581723552} a^{13} + \frac{7430391021196567342287994563462997887685661167}{31944162945674612922372067145716747400145430888} a^{12} + \frac{9549175173549189807513360714360697919663978303}{63888325891349225844744134291433494800290861776} a^{11} - \frac{6953203592899500545429886461839787408834360249}{63888325891349225844744134291433494800290861776} a^{10} - \frac{6200281195722003906830721580738401507258954857}{63888325891349225844744134291433494800290861776} a^{9} - \frac{7797691550672626844880136454887782873664972683}{31944162945674612922372067145716747400145430888} a^{8} + \frac{41162650814003826080421133156048935314385616305}{127776651782698451689488268582866989600581723552} a^{7} - \frac{49796451367922368416236749079942013525215300867}{127776651782698451689488268582866989600581723552} a^{6} - \frac{40529543695910693728186726194300234831928285907}{127776651782698451689488268582866989600581723552} a^{5} - \frac{6500639175401361145189595141907858324007300817}{63888325891349225844744134291433494800290861776} a^{4} - \frac{62549852734714348018187174845904057726496057651}{127776651782698451689488268582866989600581723552} a^{3} + \frac{41319560407935023519540977665059991196201658245}{127776651782698451689488268582866989600581723552} a^{2} - \frac{44008622630852829166975142070497376358090583121}{127776651782698451689488268582866989600581723552} a - \frac{11338342638225151671920694418255729890751249079}{31944162945674612922372067145716747400145430888}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9876199.95752 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{305}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{61})\), 10.2.2976800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||