Normalized defining polynomial
\( x^{20} - 10 x^{19} - 551 x^{18} + 5244 x^{17} + 143308 x^{16} - 1266620 x^{15} - 23396286 x^{14} + 186362336 x^{13} + 2659716342 x^{12} - 18440210056 x^{11} - 220124145524 x^{10} + 1274252880396 x^{9} + 13432422281717 x^{8} - 61585942496134 x^{7} - 597010337880175 x^{6} + 2012144808234700 x^{5} + 18523626732012672 x^{4} - 40475332525530080 x^{3} - 363645477908500760 x^{2} + 384229164241789480 x + 3464377612615374383 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45592937228519093176950135516713794628013156197206439554131977=53^{3}\cdot 61^{6}\cdot 397^{6}\cdot 11493420709^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1210.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 61, 397, 11493420709$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{38} a^{11} + \frac{2}{19} a^{10} + \frac{9}{38} a^{9} - \frac{2}{19} a^{8} + \frac{7}{19} a^{7} + \frac{2}{19} a^{6} + \frac{9}{38} a^{5} - \frac{4}{19} a^{4} - \frac{1}{2} a^{3} + \frac{3}{19} a^{2} + \frac{17}{38} a - \frac{7}{38}$, $\frac{1}{260642} a^{12} - \frac{3}{130321} a^{11} + \frac{64759}{260642} a^{10} - \frac{31549}{130321} a^{9} - \frac{38562}{130321} a^{8} - \frac{47454}{130321} a^{7} - \frac{118439}{260642} a^{6} - \frac{10271}{130321} a^{5} - \frac{127771}{260642} a^{4} + \frac{44007}{130321} a^{3} + \frac{76261}{260642} a^{2} + \frac{12211}{260642} a + \frac{31062}{130321}$, $\frac{1}{4952198} a^{13} + \frac{3}{4952198} a^{12} + \frac{64705}{4952198} a^{11} + \frac{259091}{4952198} a^{10} + \frac{68460}{2476099} a^{9} + \frac{1169340}{2476099} a^{8} + \frac{69957}{4952198} a^{7} - \frac{304567}{4952198} a^{6} + \frac{208635}{4952198} a^{5} - \frac{279999}{4952198} a^{4} - \frac{1216749}{4952198} a^{3} + \frac{349280}{2476099} a^{2} + \frac{1214591}{4952198} a - \frac{502368}{2476099}$, $\frac{1}{33967126082} a^{14} - \frac{7}{33967126082} a^{13} + \frac{24215}{16983563041} a^{12} - \frac{290489}{33967126082} a^{11} + \frac{786338547}{16983563041} a^{10} - \frac{7860722821}{33967126082} a^{9} + \frac{10881396439}{33967126082} a^{8} + \frac{3635556077}{33967126082} a^{7} - \frac{7311474928}{16983563041} a^{6} - \frac{1867437471}{33967126082} a^{5} + \frac{3000808063}{33967126082} a^{4} - \frac{16895016229}{33967126082} a^{3} - \frac{30527816}{16983563041} a^{2} - \frac{11750139681}{33967126082} a + \frac{3182974191}{33967126082}$, $\frac{1}{645375395558} a^{15} + \frac{1}{322687697779} a^{14} + \frac{48367}{645375395558} a^{13} + \frac{145381}{645375395558} a^{12} + \frac{1570062693}{645375395558} a^{11} + \frac{6293371025}{645375395558} a^{10} + \frac{156886638976}{322687697779} a^{9} + \frac{16816935932}{322687697779} a^{8} - \frac{253639953819}{645375395558} a^{7} + \frac{274131526809}{645375395558} a^{6} + \frac{27064061494}{322687697779} a^{5} - \frac{113828813118}{322687697779} a^{4} - \frac{254017579939}{645375395558} a^{3} + \frac{259437368287}{645375395558} a^{2} - \frac{136201956674}{322687697779} a + \frac{62613893801}{645375395558}$, $\frac{1}{20313804327189225658} a^{16} - \frac{4}{10156902163594612829} a^{15} - \frac{109453589}{10156902163594612829} a^{14} + \frac{766175193}{10156902163594612829} a^{13} - \frac{12731532563871}{10156902163594612829} a^{12} + \frac{76379235105535}{10156902163594612829} a^{11} - \frac{618321615115295653}{20313804327189225658} a^{10} + \frac{3090207826120561943}{20313804327189225658} a^{9} + \frac{2113417877982004207}{10156902163594612829} a^{8} + \frac{2590349477181953714}{10156902163594612829} a^{7} + \frac{1900268175364885057}{20313804327189225658} a^{6} + \frac{9457746053092766259}{20313804327189225658} a^{5} - \frac{9589971205641758023}{20313804327189225658} a^{4} - \frac{1744831260016083279}{10156902163594612829} a^{3} + \frac{571509994239431135}{1562600332860709666} a^{2} + \frac{2726245681241185507}{20313804327189225658} a + \frac{2108383587869726013}{20313804327189225658}$, $\frac{1}{385962282216595287502} a^{17} + \frac{1}{385962282216595287502} a^{16} - \frac{109453625}{192981141108297643751} a^{15} - \frac{218907108}{192981141108297643751} a^{14} - \frac{12724636987134}{192981141108297643751} a^{13} - \frac{38204557969304}{192981141108297643751} a^{12} - \frac{47457445298722771}{29689406324353483654} a^{11} - \frac{1237343354958549467}{192981141108297643751} a^{10} - \frac{89844119772086288047}{385962282216595287502} a^{9} + \frac{82552523360587668551}{192981141108297643751} a^{8} + \frac{150095580400586180199}{385962282216595287502} a^{7} + \frac{3123177652093753057}{192981141108297643751} a^{6} - \frac{84117954327038784794}{192981141108297643751} a^{5} - \frac{171054620679564891397}{385962282216595287502} a^{4} - \frac{64604941409555345583}{385962282216595287502} a^{3} + \frac{24639555340032701322}{192981141108297643751} a^{2} + \frac{53949906013898649104}{192981141108297643751} a - \frac{163848786653875496805}{385962282216595287502}$, $\frac{1}{2647315293723627076976218} a^{18} - \frac{9}{2647315293723627076976218} a^{17} + \frac{15775}{2647315293723627076976218} a^{16} - \frac{4846}{101819818989370272191393} a^{15} - \frac{17662647860703}{2647315293723627076976218} a^{14} + \frac{123638537229137}{2647315293723627076976218} a^{13} - \frac{3531308045813608583}{2647315293723627076976218} a^{12} + \frac{21186240973891942551}{2647315293723627076976218} a^{11} + \frac{98202914026159890520908}{1323657646861813538488109} a^{10} - \frac{491111672261903881190401}{1323657646861813538488109} a^{9} + \frac{305754632758529577914061}{1323657646861813538488109} a^{8} + \frac{800220754950178280132259}{2647315293723627076976218} a^{7} - \frac{498728157495198525586781}{2647315293723627076976218} a^{6} + \frac{1188128974122427151150523}{2647315293723627076976218} a^{5} - \frac{637007782644558230349371}{2647315293723627076976218} a^{4} - \frac{1087798324251775838493}{203639637978740544382786} a^{3} - \frac{1221066806026148505018477}{2647315293723627076976218} a^{2} + \frac{556884991224097773490947}{2647315293723627076976218} a + \frac{241488678043415232785414}{1323657646861813538488109}$, $\frac{1}{50298990580748914462548142} a^{19} + \frac{413}{1323657646861813538488109} a^{17} + \frac{841}{2647315293723627076976218} a^{16} - \frac{17662648994667}{50298990580748914462548142} a^{15} - \frac{17662646758595}{25149495290374457231274071} a^{14} - \frac{1765097649489273175}{25149495290374457231274071} a^{13} - \frac{5297765719215267348}{25149495290374457231274071} a^{12} + \frac{15122808017006523732675}{3869153121596070343272934} a^{11} + \frac{392714553973535133497771}{25149495290374457231274071} a^{10} + \frac{2504037816710462339640997}{25149495290374457231274071} a^{9} + \frac{24835011200669100221418883}{50298990580748914462548142} a^{8} - \frac{5913974209504491771614988}{25149495290374457231274071} a^{7} + \frac{2320760718918260825899074}{25149495290374457231274071} a^{6} - \frac{266554095218611088949768}{25149495290374457231274071} a^{5} - \frac{226290417284521502546156}{25149495290374457231274071} a^{4} + \frac{1973145688741823937915139}{25149495290374457231274071} a^{3} - \frac{3892700484643805847349564}{25149495290374457231274071} a^{2} - \frac{18330895366408933265796611}{50298990580748914462548142} a + \frac{2173398102390737095068726}{25149495290374457231274071}$
Class group and class number
$C_{2}\times C_{408}$, which has order $816$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77484719294100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.8651396150595819591343601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | $20$ | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.4.3.4 | $x^{4} + 424$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||
| 11493420709 | Data not computed | ||||||