Normalized defining polynomial
\( x^{20} + 2200 x^{18} + 1651529 x^{16} + 455819584 x^{14} - 1705442244 x^{12} - 21744427673188 x^{10} - 3520584578300493 x^{8} - 156133983685665546 x^{6} + 6721737103902251508 x^{4} + 702102201216507460490 x^{2} + 14330725072676595386243 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43638965741625483308617553270102089623548879194554368=2^{36}\cdot 11^{10}\cdot 83^{7}\cdot 983^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $428.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{121} a^{4}$, $\frac{1}{121} a^{5}$, $\frac{1}{1331} a^{6}$, $\frac{1}{1331} a^{7}$, $\frac{1}{14641} a^{8}$, $\frac{1}{14641} a^{9}$, $\frac{1}{161051} a^{10}$, $\frac{1}{161051} a^{11}$, $\frac{1}{1771561} a^{12}$, $\frac{1}{1771561} a^{13}$, $\frac{1}{19487171} a^{14}$, $\frac{1}{19487171} a^{15}$, $\frac{1}{17791787123} a^{16} + \frac{34}{1617435193} a^{14} + \frac{37}{147039563} a^{12} + \frac{6}{13367233} a^{10} - \frac{35}{1215203} a^{8} - \frac{20}{110473} a^{6} + \frac{13}{913} a^{2}$, $\frac{1}{17791787123} a^{17} + \frac{34}{1617435193} a^{15} + \frac{37}{147039563} a^{13} + \frac{6}{13367233} a^{11} - \frac{35}{1215203} a^{9} - \frac{20}{110473} a^{7} + \frac{13}{913} a^{3}$, $\frac{1}{444517443118974250114457677791534907418789281422045929114004634} a^{18} - \frac{59513153373960247186937347026850520567272096508217}{3673697877016316116648410560260619069576770920843354786066154} a^{16} + \frac{20293441989223902843204989118123107158040314912432106}{1836848938508158058324205280130309534788385460421677393033077} a^{14} + \frac{6638474696658786159912419554801106140804560263343536}{166986267137105278029473207284573594071671405492879763003007} a^{12} - \frac{2664634865495039775176440306226793796704504602591790}{1380051794521531223384076093260938793980755417296526966967} a^{10} - \frac{14681239894293324622355811639961052963576160329217544}{1380051794521531223384076093260938793980755417296526966967} a^{8} + \frac{499608556359951784766660334904745225504819307953151}{3023114555359323599965117400352549384404721615107397518} a^{6} + \frac{59484977095713168408658674496180160831301301600966987}{22810773463165805345191340384478327173235626732173999454} a^{4} + \frac{988144238200219782052977388921670921681637587004095}{24984417812886971900538160333492143672766294339730558} a^{2} - \frac{2920763372841472276621472631464901337832220119}{27838442808006618428440286996678633898694336402}$, $\frac{1}{444517443118974250114457677791534907418789281422045929114004634} a^{19} - \frac{59513153373960247186937347026850520567272096508217}{3673697877016316116648410560260619069576770920843354786066154} a^{17} + \frac{20293441989223902843204989118123107158040314912432106}{1836848938508158058324205280130309534788385460421677393033077} a^{15} + \frac{6638474696658786159912419554801106140804560263343536}{166986267137105278029473207284573594071671405492879763003007} a^{13} - \frac{2664634865495039775176440306226793796704504602591790}{1380051794521531223384076093260938793980755417296526966967} a^{11} - \frac{14681239894293324622355811639961052963576160329217544}{1380051794521531223384076093260938793980755417296526966967} a^{9} + \frac{499608556359951784766660334904745225504819307953151}{3023114555359323599965117400352549384404721615107397518} a^{7} + \frac{59484977095713168408658674496180160831301301600966987}{22810773463165805345191340384478327173235626732173999454} a^{5} + \frac{988144238200219782052977388921670921681637587004095}{24984417812886971900538160333492143672766294339730558} a^{3} - \frac{2920763372841472276621472631464901337832220119}{27838442808006618428440286996678633898694336402} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $83$ | 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 983 | Data not computed | ||||||