Normalized defining polynomial
\( x^{20} - 32 x^{18} + 320 x^{16} - 1014 x^{14} - 516 x^{12} - 11690 x^{10} + 178705 x^{8} - 686260 x^{6} + 1435030 x^{4} - 1609960 x^{2} + 1156805 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43294334715274231808000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{52} a^{17} + \frac{1}{13} a^{15} - \frac{1}{4} a^{14} - \frac{1}{13} a^{13} - \frac{1}{4} a^{12} - \frac{1}{52} a^{11} + \frac{5}{13} a^{9} + \frac{1}{4} a^{8} - \frac{11}{52} a^{7} - \frac{1}{4} a^{6} - \frac{3}{13} a^{5} - \frac{1}{4} a^{4} - \frac{3}{26} a^{3} - \frac{1}{4} a^{2} - \frac{11}{26} a$, $\frac{1}{2032982804119566924301474564} a^{18} - \frac{38016987719011283575274655}{508245701029891731075368641} a^{16} - \frac{1519507650915451368396871}{17525713828616956243978229} a^{14} - \frac{1}{4} a^{13} - \frac{192804648581135205156108067}{1016491402059783462150737282} a^{12} - \frac{294440636169050947008105211}{2032982804119566924301474564} a^{10} - \frac{1}{2} a^{9} + \frac{868532105705995477819215977}{2032982804119566924301474564} a^{8} - \frac{1}{4} a^{7} + \frac{674455695581029050839131281}{2032982804119566924301474564} a^{6} - \frac{580903643851562985720273149}{2032982804119566924301474564} a^{4} + \frac{1}{4} a^{3} + \frac{824091756212937082612338653}{2032982804119566924301474564} a^{2} - \frac{1}{2} a + \frac{65910052336013689813037273}{156383292624582071100113428}$, $\frac{1}{75220363752423976199154558868} a^{19} - \frac{660313651905936865376467261}{75220363752423976199154558868} a^{17} + \frac{221756249168358625698129493}{2593805646635309524108777892} a^{15} - \frac{1209296050640918667306845349}{37610181876211988099577279434} a^{13} - \frac{909588869629363070117105567}{37610181876211988099577279434} a^{11} - \frac{1}{4} a^{10} + \frac{15935759934264695536708351539}{37610181876211988099577279434} a^{9} - \frac{1}{2} a^{8} - \frac{466693202392107401134427981}{18805090938105994049788639717} a^{7} - \frac{1}{2} a^{6} - \frac{5100621496004335124414912537}{18805090938105994049788639717} a^{5} - \frac{1}{4} a^{4} + \frac{33351816622126007871435931677}{75220363752423976199154558868} a^{3} - \frac{1}{2} a^{2} + \frac{691443222834341974213490985}{5786181827109536630704196836} a + \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2404286947.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.753625.1, 10.2.2907907280000000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||