Normalized defining polynomial
\( x^{20} + 26 x^{18} + 193 x^{16} - 488 x^{14} - 8606 x^{12} - 13380 x^{10} + 8170 x^{8} - 113960 x^{6} - 271875 x^{4} - 26310 x^{2} + 245 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43294334715274231808000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{4} - \frac{1}{16} a^{2} + \frac{1}{16}$, $\frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} - \frac{1}{32} a^{4} + \frac{3}{32} a^{3} - \frac{3}{32} a^{2} - \frac{5}{32} a + \frac{5}{32}$, $\frac{1}{64} a^{8} + \frac{1}{32} a^{4} - \frac{1}{8} a^{2} + \frac{5}{64}$, $\frac{1}{64} a^{9} + \frac{1}{32} a^{5} - \frac{1}{8} a^{3} + \frac{5}{64} a$, $\frac{1}{128} a^{10} - \frac{1}{128} a^{8} + \frac{1}{64} a^{6} + \frac{3}{64} a^{4} - \frac{19}{128} a^{2} + \frac{11}{128}$, $\frac{1}{256} a^{11} - \frac{1}{256} a^{10} - \frac{1}{256} a^{9} + \frac{1}{256} a^{8} + \frac{1}{128} a^{7} - \frac{1}{128} a^{6} - \frac{5}{128} a^{5} + \frac{5}{128} a^{4} + \frac{13}{256} a^{3} - \frac{13}{256} a^{2} - \frac{5}{256} a + \frac{5}{256}$, $\frac{1}{512} a^{12} - \frac{1}{256} a^{10} + \frac{3}{512} a^{8} - \frac{3}{128} a^{6} + \frac{23}{512} a^{4} - \frac{9}{256} a^{2} + \frac{5}{512}$, $\frac{1}{512} a^{13} - \frac{1}{256} a^{10} + \frac{1}{512} a^{9} + \frac{1}{256} a^{8} - \frac{1}{64} a^{7} - \frac{1}{128} a^{6} + \frac{3}{512} a^{5} + \frac{5}{128} a^{4} + \frac{1}{64} a^{3} - \frac{13}{256} a^{2} - \frac{5}{512} a + \frac{5}{256}$, $\frac{1}{1024} a^{14} - \frac{1}{1024} a^{12} + \frac{1}{1024} a^{10} + \frac{7}{1024} a^{8} + \frac{11}{1024} a^{6} + \frac{37}{1024} a^{4} - \frac{141}{1024} a^{2} + \frac{85}{1024}$, $\frac{1}{2048} a^{15} - \frac{1}{2048} a^{14} + \frac{1}{2048} a^{13} - \frac{1}{2048} a^{12} - \frac{3}{2048} a^{11} + \frac{3}{2048} a^{10} - \frac{3}{2048} a^{9} + \frac{3}{2048} a^{8} - \frac{13}{2048} a^{7} + \frac{13}{2048} a^{6} + \frac{51}{2048} a^{5} - \frac{51}{2048} a^{4} - \frac{49}{2048} a^{3} + \frac{49}{2048} a^{2} + \frac{15}{2048} a - \frac{15}{2048}$, $\frac{1}{4096} a^{16} - \frac{1}{1024} a^{12} - \frac{5}{2048} a^{8} + \frac{1}{64} a^{6} - \frac{25}{1024} a^{4} + \frac{1}{64} a^{2} - \frac{15}{4096}$, $\frac{1}{4096} a^{17} - \frac{1}{1024} a^{13} - \frac{5}{2048} a^{9} - \frac{1}{64} a^{7} - \frac{1}{32} a^{6} - \frac{57}{1024} a^{5} - \frac{1}{32} a^{4} - \frac{5}{64} a^{3} - \frac{3}{32} a^{2} + \frac{625}{4096} a + \frac{5}{32}$, $\frac{1}{137138954240} a^{18} + \frac{1765029}{137138954240} a^{16} - \frac{466223}{6856947712} a^{14} + \frac{11508253}{34284738560} a^{12} + \frac{27012123}{13713895424} a^{10} - \frac{93591121}{13713895424} a^{8} - \frac{45883147}{6856947712} a^{6} + \frac{356691957}{6856947712} a^{4} - \frac{1138807323}{27427790848} a^{2} + \frac{10454679497}{27427790848}$, $\frac{1}{1919945359360} a^{19} - \frac{1}{274277908480} a^{18} + \frac{169170979}{1919945359360} a^{17} + \frac{31716161}{274277908480} a^{16} - \frac{20554937}{95997267968} a^{15} - \frac{6230015}{13713895424} a^{14} + \frac{346320153}{479986339840} a^{13} - \frac{11508253}{68569477120} a^{12} + \frac{201114311}{191994535936} a^{11} + \frac{66735209}{27427790848} a^{10} - \frac{1452927435}{191994535936} a^{9} - \frac{140777209}{27427790848} a^{8} + \frac{268840039}{95997267968} a^{7} - \frac{242055087}{13713895424} a^{6} - \frac{232199213}{13713895424} a^{5} + \frac{835238407}{13713895424} a^{4} - \frac{22379274259}{383989071872} a^{3} + \frac{9843916723}{54855581696} a^{2} - \frac{151480444057}{383989071872} a + \frac{4953364141}{54855581696}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2675502285.04 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.753625.1, 10.6.2907907280000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||