Normalized defining polynomial
\( x^{20} + 3 x^{18} - 98 x^{16} - 2142 x^{14} - 12663 x^{12} - 43302 x^{10} + 43057 x^{8} - 80742 x^{6} + 847702 x^{4} - 395577 x^{2} + 53361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4244159221123694514715246343994140625=3^{14}\cdot 5^{14}\cdot 7^{14}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{28} a^{10} - \frac{1}{14} a^{8} - \frac{1}{14} a^{6} - \frac{1}{7} a^{4} - \frac{1}{2} a^{3} + \frac{1}{7} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{56} a^{11} - \frac{1}{56} a^{10} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} + \frac{3}{14} a^{7} - \frac{3}{14} a^{6} - \frac{1}{14} a^{5} + \frac{1}{14} a^{4} - \frac{3}{7} a^{3} - \frac{1}{14} a^{2} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{112} a^{12} - \frac{1}{112} a^{10} - \frac{1}{28} a^{8} - \frac{5}{28} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{11}{112} a^{2} - \frac{1}{16}$, $\frac{1}{224} a^{13} - \frac{1}{224} a^{12} - \frac{1}{224} a^{11} + \frac{1}{224} a^{10} + \frac{13}{56} a^{9} - \frac{13}{56} a^{8} - \frac{5}{56} a^{7} + \frac{5}{56} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{11}{224} a^{3} - \frac{11}{224} a^{2} - \frac{1}{32} a + \frac{1}{32}$, $\frac{1}{448} a^{14} - \frac{1}{224} a^{12} + \frac{5}{448} a^{10} + \frac{3}{56} a^{8} - \frac{5}{28} a^{6} - \frac{7}{64} a^{4} - \frac{1}{2} a^{3} + \frac{1}{32} a^{2} + \frac{17}{64}$, $\frac{1}{896} a^{15} - \frac{1}{896} a^{14} - \frac{1}{448} a^{13} + \frac{1}{448} a^{12} + \frac{5}{896} a^{11} - \frac{5}{896} a^{10} - \frac{25}{112} a^{9} + \frac{25}{112} a^{8} - \frac{5}{56} a^{7} + \frac{5}{56} a^{6} - \frac{7}{128} a^{5} - \frac{57}{128} a^{4} + \frac{1}{64} a^{3} + \frac{31}{64} a^{2} + \frac{17}{128} a - \frac{17}{128}$, $\frac{1}{8960} a^{16} + \frac{1}{1792} a^{14} - \frac{9}{8960} a^{12} + \frac{31}{1792} a^{10} + \frac{127}{1120} a^{8} - \frac{429}{1792} a^{6} - \frac{3849}{8960} a^{4} - \frac{507}{1792} a^{2} - \frac{1}{2} a - \frac{137}{1280}$, $\frac{1}{17920} a^{17} - \frac{1}{17920} a^{16} + \frac{1}{3584} a^{15} - \frac{1}{3584} a^{14} - \frac{9}{17920} a^{13} + \frac{9}{17920} a^{12} + \frac{31}{3584} a^{11} - \frac{31}{3584} a^{10} + \frac{127}{2240} a^{9} - \frac{127}{2240} a^{8} + \frac{467}{3584} a^{7} - \frac{467}{3584} a^{6} - \frac{3849}{17920} a^{5} - \frac{5111}{17920} a^{4} - \frac{507}{3584} a^{3} - \frac{1285}{3584} a^{2} - \frac{137}{2560} a + \frac{137}{2560}$, $\frac{1}{1124318208722472960} a^{18} - \frac{3732187212667}{93693184060206080} a^{16} + \frac{377490523781213}{562159104361236480} a^{14} - \frac{300512958388527}{93693184060206080} a^{12} - \frac{110774582558023}{12089443104542720} a^{10} + \frac{576236268610637}{374772736240824320} a^{8} + \frac{3408113226106013}{35134944022577280} a^{6} + \frac{4374491507706431}{187386368120412160} a^{4} - \frac{1}{2} a^{3} - \frac{1230566866935863}{2509638858755520} a^{2} - \frac{1}{2} a - \frac{26582717173723669}{53538962320117760}$, $\frac{1}{24735000591894405120} a^{19} - \frac{1}{2248636417444945920} a^{18} - \frac{2837803158163}{412250009864906752} a^{17} - \frac{6724641365481}{187386368120412160} a^{16} + \frac{63785666436773}{12367500295947202560} a^{15} - \frac{691195381125653}{1124318208722472960} a^{14} - \frac{41280300237039}{412250009864906752} a^{13} + \frac{394624415591859}{187386368120412160} a^{12} - \frac{319911154120983}{265967748299939840} a^{11} - \frac{14051712714991}{3454126601297920} a^{10} - \frac{345679525631338455}{1649000039459627008} a^{9} + \frac{144313580510208051}{749545472481648640} a^{8} - \frac{46815827256923597}{220848219570485760} a^{7} + \frac{10006196522883569}{140539776090309120} a^{6} - \frac{170412136539954213}{824500019729813504} a^{5} - \frac{111264193233535287}{374772736240824320} a^{4} + \frac{758393941556699881}{1545937536993400320} a^{3} - \frac{15932970436746511}{140539776090309120} a^{2} - \frac{4170475022579713}{235571434208518144} a + \frac{32313059234548773}{107077924640235520}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44976855810.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:Q_8$ (as 20T47):
| A solvable group of order 200 |
| The 8 conjugacy class representatives for $C_5^2:Q_8$ |
| Character table for $C_5^2:Q_8$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{5}, \sqrt{21})\), 10.2.98101701371953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | R | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |