Normalized defining polynomial
\( x^{20} - 10 x^{19} + 55 x^{18} - 210 x^{17} + 592 x^{16} - 1268 x^{15} + 2022 x^{14} - 2164 x^{13} + 752 x^{12} + 2612 x^{11} - 6874 x^{10} + 9768 x^{9} - 9327 x^{8} + 5722 x^{7} - 1187 x^{6} - 1794 x^{5} + 2419 x^{4} - 1610 x^{3} + 655 x^{2} - 154 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4228123812051506458571128700928=2^{24}\cdot 3^{3}\cdot 19\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{116} a^{16} - \frac{2}{29} a^{15} + \frac{7}{116} a^{14} - \frac{25}{116} a^{13} + \frac{1}{116} a^{12} + \frac{13}{116} a^{11} + \frac{1}{29} a^{10} - \frac{1}{29} a^{9} + \frac{11}{58} a^{8} + \frac{39}{116} a^{7} - \frac{3}{29} a^{6} - \frac{15}{58} a^{4} - \frac{11}{116} a^{3} + \frac{57}{116} a^{2} - \frac{27}{58} a + \frac{3}{29}$, $\frac{1}{116} a^{17} + \frac{1}{116} a^{15} - \frac{27}{116} a^{14} - \frac{25}{116} a^{13} + \frac{21}{116} a^{12} - \frac{2}{29} a^{11} + \frac{7}{29} a^{10} - \frac{5}{58} a^{9} + \frac{41}{116} a^{8} - \frac{12}{29} a^{7} - \frac{19}{58} a^{6} + \frac{7}{29} a^{5} - \frac{19}{116} a^{4} + \frac{27}{116} a^{3} + \frac{27}{58} a^{2} - \frac{7}{58} a - \frac{5}{29}$, $\frac{1}{116} a^{18} - \frac{19}{116} a^{15} + \frac{13}{58} a^{14} - \frac{3}{29} a^{13} - \frac{9}{116} a^{12} + \frac{15}{116} a^{11} - \frac{7}{58} a^{10} + \frac{45}{116} a^{9} - \frac{3}{29} a^{8} - \frac{19}{116} a^{7} - \frac{9}{58} a^{6} + \frac{39}{116} a^{5} + \frac{57}{116} a^{4} - \frac{51}{116} a^{3} + \frac{45}{116} a^{2} + \frac{17}{58} a - \frac{3}{29}$, $\frac{1}{116} a^{19} - \frac{5}{58} a^{15} + \frac{5}{116} a^{14} - \frac{5}{29} a^{13} - \frac{6}{29} a^{12} + \frac{1}{116} a^{11} + \frac{5}{116} a^{10} - \frac{15}{58} a^{9} + \frac{51}{116} a^{8} + \frac{27}{116} a^{7} - \frac{15}{116} a^{6} + \frac{57}{116} a^{5} + \frac{17}{116} a^{4} + \frac{5}{58} a^{3} - \frac{43}{116} a^{2} - \frac{13}{29} a - \frac{1}{29}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 422528480.996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2382032.1, 10.8.272355669553152.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |