Normalized defining polynomial
\( x^{20} + 6732 x^{18} + 2833578 x^{16} - 43310745324 x^{14} - 75078668227101 x^{12} - 27960060073739838 x^{10} + 23406765475219102284 x^{8} + 22525314252979581288872 x^{6} + 6671346966170800390622211 x^{4} + 722376753979057069513298634 x^{2} + 13847621999751594679177362227 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42167852567509546640800746931813678080249422928026745700352=2^{36}\cdot 11^{10}\cdot 83^{7}\cdot 983^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $853.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{121} a^{4}$, $\frac{1}{121} a^{5}$, $\frac{1}{1331} a^{6}$, $\frac{1}{1331} a^{7}$, $\frac{1}{14641} a^{8}$, $\frac{1}{14641} a^{9}$, $\frac{1}{161051} a^{10}$, $\frac{1}{161051} a^{11}$, $\frac{1}{1771561} a^{12}$, $\frac{1}{1771561} a^{13}$, $\frac{1}{19155889093} a^{14} - \frac{371}{1741444463} a^{12} - \frac{174}{158313133} a^{10} + \frac{245}{14392103} a^{8} - \frac{230}{1308373} a^{6} - \frac{483}{118943} a^{4} - \frac{356}{10813} a^{2}$, $\frac{1}{19155889093} a^{15} - \frac{371}{1741444463} a^{13} - \frac{174}{158313133} a^{11} + \frac{245}{14392103} a^{9} - \frac{230}{1308373} a^{7} - \frac{483}{118943} a^{5} - \frac{356}{10813} a^{3}$, $\frac{1}{17192008187296547} a^{16} + \frac{612}{1562909835208777} a^{14} + \frac{23418}{142082712291707} a^{12} - \frac{32540004}{12916610208337} a^{10} + \frac{4953107}{1174237291667} a^{8} + \frac{27326917}{106748844697} a^{6} + \frac{33559264}{9704440427} a^{4} - \frac{1315}{81589} a^{2}$, $\frac{1}{17192008187296547} a^{17} + \frac{612}{1562909835208777} a^{15} + \frac{23418}{142082712291707} a^{13} - \frac{32540004}{12916610208337} a^{11} + \frac{4953107}{1174237291667} a^{9} + \frac{27326917}{106748844697} a^{7} + \frac{33559264}{9704440427} a^{5} - \frac{1315}{81589} a^{3}$, $\frac{1}{32360431411373579467966769371634458044603231661621833291935705032240384301892973044746} a^{18} - \frac{74680801898291602886142774175296677164427376850128517334642972740013}{2941857401033961769815160851966768913145748332874712117448700457476398572899361185886} a^{16} + \frac{5807262914933819342070489603160674066595249266576653452075952002436971667}{267441581912178342710469168360615355740522575715882919768063677952399870263578289626} a^{14} - \frac{5891094042276856402608154814768211618195227008396197651679566679888798887445}{24312871082925303882769924396419577794592961428716629069823970722945442751234389966} a^{12} + \frac{1969638063454321650950073187295380413103172824542850439544921329724658430243}{1105130503769331994671360199837253536117861883123483139537453214679338306874290453} a^{10} - \frac{1668098420525899664900724034205260059900564035729467929428945709887733676081}{100466409433575635879214563621568503283441989374862103594313928607212573352208223} a^{8} + \frac{424417515316113202263462244815178229361511379851858689181001564651922379210}{9133309948506875989019505783778954843949271761351100326755811691564779395655293} a^{6} - \frac{885206512742962005702581845220480648918152012268433898862868676728166346}{844660126561257374365995170977430393410641982923434784681014675997852528961} a^{4} - \frac{18968151343347061410410703852035581934409785818742616534242200719215}{1882295020967080843932827778649818866871853230935620297925666619492718} a^{2} + \frac{133326545769339012107016242904197943233013042572618894834796789}{2097313720952892317182717120567521765826112066060175556114033442}$, $\frac{1}{32360431411373579467966769371634458044603231661621833291935705032240384301892973044746} a^{19} - \frac{74680801898291602886142774175296677164427376850128517334642972740013}{2941857401033961769815160851966768913145748332874712117448700457476398572899361185886} a^{17} + \frac{5807262914933819342070489603160674066595249266576653452075952002436971667}{267441581912178342710469168360615355740522575715882919768063677952399870263578289626} a^{15} - \frac{5891094042276856402608154814768211618195227008396197651679566679888798887445}{24312871082925303882769924396419577794592961428716629069823970722945442751234389966} a^{13} + \frac{1969638063454321650950073187295380413103172824542850439544921329724658430243}{1105130503769331994671360199837253536117861883123483139537453214679338306874290453} a^{11} - \frac{1668098420525899664900724034205260059900564035729467929428945709887733676081}{100466409433575635879214563621568503283441989374862103594313928607212573352208223} a^{9} + \frac{424417515316113202263462244815178229361511379851858689181001564651922379210}{9133309948506875989019505783778954843949271761351100326755811691564779395655293} a^{7} - \frac{885206512742962005702581845220480648918152012268433898862868676728166346}{844660126561257374365995170977430393410641982923434784681014675997852528961} a^{5} - \frac{18968151343347061410410703852035581934409785818742616534242200719215}{1882295020967080843932827778649818866871853230935620297925666619492718} a^{3} + \frac{133326545769339012107016242904197943233013042572618894834796789}{2097313720952892317182717120567521765826112066060175556114033442} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $83$ | 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 983 | Data not computed | ||||||