Normalized defining polynomial
\( x^{20} - 11 x^{18} - 14 x^{17} + 47 x^{16} + 99 x^{15} - 25 x^{14} - 286 x^{13} - 179 x^{12} + 672 x^{11} + 283 x^{10} - 1030 x^{9} - 430 x^{8} + 650 x^{7} + 650 x^{6} - 312 x^{5} - 320 x^{4} + 52 x^{3} + 418 x^{2} + 281 x + 79 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41327071510653103765869140625=3^{6}\cdot 5^{14}\cdot 23^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{15} - \frac{1}{25} a^{14} + \frac{2}{25} a^{13} + \frac{6}{25} a^{12} - \frac{7}{25} a^{11} - \frac{2}{5} a^{10} - \frac{7}{25} a^{9} + \frac{9}{25} a^{8} + \frac{2}{25} a^{7} + \frac{4}{25} a^{6} - \frac{8}{25} a^{5} + \frac{8}{25} a^{4} + \frac{4}{25} a^{3} + \frac{2}{25} a^{2} + \frac{12}{25} a + \frac{9}{25}$, $\frac{1}{25} a^{17} - \frac{2}{25} a^{15} + \frac{1}{25} a^{14} - \frac{2}{25} a^{13} + \frac{4}{25} a^{12} - \frac{12}{25} a^{11} + \frac{3}{25} a^{10} - \frac{8}{25} a^{9} - \frac{4}{25} a^{8} + \frac{11}{25} a^{7} - \frac{9}{25} a^{6} - \frac{2}{5} a^{5} + \frac{7}{25} a^{4} + \frac{1}{25} a^{3} + \frac{9}{25} a^{2} + \frac{11}{25} a - \frac{1}{25}$, $\frac{1}{625} a^{18} - \frac{3}{625} a^{17} - \frac{8}{625} a^{16} + \frac{28}{625} a^{15} + \frac{11}{625} a^{14} + \frac{23}{625} a^{13} - \frac{32}{125} a^{12} - \frac{69}{625} a^{11} - \frac{137}{625} a^{10} - \frac{128}{625} a^{9} + \frac{239}{625} a^{8} + \frac{271}{625} a^{7} + \frac{198}{625} a^{6} - \frac{14}{125} a^{5} + \frac{172}{625} a^{4} - \frac{33}{625} a^{3} - \frac{3}{625} a^{2} + \frac{9}{625} a + \frac{34}{625}$, $\frac{1}{124703340293541165460625} a^{19} + \frac{19297750805259057202}{124703340293541165460625} a^{18} - \frac{2089740305958481130548}{124703340293541165460625} a^{17} - \frac{15023079887160812812}{124703340293541165460625} a^{16} + \frac{2571723226771721909051}{124703340293541165460625} a^{15} - \frac{4807145573679503713447}{124703340293541165460625} a^{14} + \frac{614909964384213676251}{24940668058708233092125} a^{13} + \frac{45442349677786873266231}{124703340293541165460625} a^{12} - \frac{264941420982256549029}{1502449883054712836875} a^{11} + \frac{4895741302603063271762}{124703340293541165460625} a^{10} - \frac{11794509378051417575951}{124703340293541165460625} a^{9} + \frac{33593632853179574421666}{124703340293541165460625} a^{8} + \frac{42864935556468852322928}{124703340293541165460625} a^{7} - \frac{11028046455649404569766}{24940668058708233092125} a^{6} + \frac{51327550284118896434797}{124703340293541165460625} a^{5} - \frac{813550296700864617651}{5421884360588746324375} a^{4} + \frac{33816193394164219581632}{124703340293541165460625} a^{3} - \frac{19438551276377448821331}{124703340293541165460625} a^{2} + \frac{51366937681554518522804}{124703340293541165460625} a + \frac{7049326926347085492369}{24940668058708233092125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2926683.55395 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n794 are not computed |
| Character table for t20n794 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 89 | Data not computed | ||||||