Normalized defining polynomial
\( x^{20} - 6 x^{19} + 13 x^{18} + 18 x^{17} - 191 x^{16} + 714 x^{15} - 2050 x^{14} + 5322 x^{13} - 10739 x^{12} + 16524 x^{11} - 21587 x^{10} + 28024 x^{9} - 35209 x^{8} + 65854 x^{7} - 84758 x^{6} + 800 x^{5} + 110721 x^{4} - 293560 x^{3} + 314885 x^{2} - 107400 x - 20975 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(411539421581712055500800000000000=2^{24}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{235151180587442370009917412075626248623941825311797695} a^{19} - \frac{19560196850154224957483605147894939632403134293366413}{235151180587442370009917412075626248623941825311797695} a^{18} + \frac{13841613324725418529030888937826779893025749480943051}{235151180587442370009917412075626248623941825311797695} a^{17} - \frac{1995857211601833209807120961912623628834878724986422}{47030236117488474001983482415125249724788365062359539} a^{16} - \frac{68887754158335173653522645423266316006841033067804771}{235151180587442370009917412075626248623941825311797695} a^{15} + \frac{62067035752274757531395256346815569151444684310873152}{235151180587442370009917412075626248623941825311797695} a^{14} - \frac{15213655728119514405033926977070342395293962990658885}{47030236117488474001983482415125249724788365062359539} a^{13} - \frac{86402339185620597424869593634404944962065184826792231}{235151180587442370009917412075626248623941825311797695} a^{12} - \frac{109920824212333693750592319306474466985903692897695621}{235151180587442370009917412075626248623941825311797695} a^{11} + \frac{72714560400356303237048732159311794298035616544855908}{235151180587442370009917412075626248623941825311797695} a^{10} - \frac{22514589427481348865481549977386819231131043933359102}{235151180587442370009917412075626248623941825311797695} a^{9} - \frac{45951833083755485302868660640089365432688591135451382}{235151180587442370009917412075626248623941825311797695} a^{8} - \frac{20591950516793974562516924656539469986340439357998322}{235151180587442370009917412075626248623941825311797695} a^{7} + \frac{117344148317683201297167199070213172400884756865183778}{235151180587442370009917412075626248623941825311797695} a^{6} + \frac{10054232408017615673270313539241569604025351829218031}{235151180587442370009917412075626248623941825311797695} a^{5} - \frac{1477032224322508770839369712176119821261695646240134}{3854937386679383114916678886485676206949865988717995} a^{4} + \frac{67155838484360583763688604928622997195990919121250123}{235151180587442370009917412075626248623941825311797695} a^{3} - \frac{79533477404556024537162332184546940166365586420002669}{235151180587442370009917412075626248623941825311797695} a^{2} + \frac{3565719801307883031779044777410070999788300898709470}{47030236117488474001983482415125249724788365062359539} a - \frac{13412820357538101705357162072097859559931006432084837}{47030236117488474001983482415125249724788365062359539}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 112279593.614 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||