Normalized defining polynomial
\( x^{20} - 2 x^{19} + 18 x^{18} - 14 x^{17} + 106 x^{16} + 48 x^{15} + 296 x^{14} + 1290 x^{13} - 1298 x^{12} + 11252 x^{11} - 8586 x^{10} + 18552 x^{9} + 50540 x^{8} - 60716 x^{7} + 172388 x^{6} + 43972 x^{5} - 99956 x^{4} - 164952 x^{3} - 76620 x^{2} - 21984 x - 3044 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(411539421581712055500800000000000=2^{24}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{27296592439892580596147823079108712471896798150706} a^{19} - \frac{4027291467901048501099747608931230611129386170833}{27296592439892580596147823079108712471896798150706} a^{18} - \frac{2855812220574125172499367204210968794848873333088}{13648296219946290298073911539554356235948399075353} a^{17} + \frac{3846116597217494505036643612824898807159056348741}{27296592439892580596147823079108712471896798150706} a^{16} + \frac{1199065365723553515693727755803037324387458571705}{13648296219946290298073911539554356235948399075353} a^{15} + \frac{615413241944608590958274669303299611735614711319}{27296592439892580596147823079108712471896798150706} a^{14} + \frac{5967991020171034182956006735837487866894031517783}{27296592439892580596147823079108712471896798150706} a^{13} - \frac{723595597843008751368208297280752663908459310889}{13648296219946290298073911539554356235948399075353} a^{12} + \frac{5225895244430915780192501891953844802515163992467}{27296592439892580596147823079108712471896798150706} a^{11} + \frac{2820779365978315452161943242618256062933026771671}{27296592439892580596147823079108712471896798150706} a^{10} + \frac{3053049588815887452017693491835979010165545706675}{13648296219946290298073911539554356235948399075353} a^{9} + \frac{3252869101802794342975734716602124382101796269627}{13648296219946290298073911539554356235948399075353} a^{8} - \frac{6212884297229027623154232156801347612625961694244}{13648296219946290298073911539554356235948399075353} a^{7} - \frac{1680765537453487197415161193529089053191419279061}{13648296219946290298073911539554356235948399075353} a^{6} + \frac{3972250330411821294423554760451521552101041708175}{13648296219946290298073911539554356235948399075353} a^{5} + \frac{1065079314897757358559454001149343131103563669991}{13648296219946290298073911539554356235948399075353} a^{4} + \frac{956647691592310590746261224775000253645162919217}{13648296219946290298073911539554356235948399075353} a^{3} + \frac{5597748372409715940344426393499502993488385769308}{13648296219946290298073911539554356235948399075353} a^{2} + \frac{3533598042426838819305187746623783820961000992220}{13648296219946290298073911539554356235948399075353} a + \frac{4982505714569551203662676530568329433546373946969}{13648296219946290298073911539554356235948399075353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252236239.947 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||