Normalized defining polynomial
\( x^{20} - 3 x^{19} - 9 x^{18} - 36 x^{17} - 40 x^{16} + 1281 x^{15} + 3528 x^{14} - 8745 x^{13} - 48932 x^{12} - 40878 x^{11} + 152064 x^{10} + 569790 x^{9} + 1176838 x^{8} + 1366674 x^{7} - 985131 x^{6} - 7684281 x^{5} - 15714352 x^{4} - 18256686 x^{3} - 12925395 x^{2} - 5071794 x - 761411 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4077952207063102833961955803138980864=2^{10}\cdot 3^{24}\cdot 7^{6}\cdot 79^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{5}$, $\frac{1}{21} a^{18} - \frac{1}{7} a^{17} - \frac{2}{21} a^{16} - \frac{1}{21} a^{15} + \frac{2}{21} a^{14} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{21} a^{6} - \frac{2}{7} a^{5} + \frac{1}{3} a^{4} - \frac{10}{21} a^{3} - \frac{10}{21} a^{2}$, $\frac{1}{4917898100885742399944802694433845139896854895128639487275} a^{19} + \frac{2115503953606120103554082125189228729016421958767936821}{196715924035429695997792107777353805595874195805145579491} a^{18} + \frac{335841432133067496526223889141766519357745938653467126666}{4917898100885742399944802694433845139896854895128639487275} a^{17} + \frac{262340006717593159689950486051907523484073533091515009554}{1639299366961914133314934231477948379965618298376213162425} a^{16} - \frac{2333938531791532212598803113129267142333148093064403679}{4917898100885742399944802694433845139896854895128639487275} a^{15} - \frac{73675316025690347604447906358656250360677474045373295608}{702556871555106057134971813490549305699550699304091355325} a^{14} - \frac{7422596575291111420054667184527426162075093372177394588}{46837124770340403808998120899369953713303379953606090355} a^{13} + \frac{130575962634557687392225124397824782665332934370567121642}{983579620177148479988960538886769027979370979025727897455} a^{12} - \frac{802390785595643198628690078735804079449903114870791899534}{1639299366961914133314934231477948379965618298376213162425} a^{11} - \frac{446630421794105037333222228647423616209114842328697664653}{1639299366961914133314934231477948379965618298376213162425} a^{10} + \frac{811844585128579957351474692309291954482000739135904687154}{1639299366961914133314934231477948379965618298376213162425} a^{9} + \frac{242123619733908261445212811232302661459650459291967768867}{1639299366961914133314934231477948379965618298376213162425} a^{8} - \frac{576707785659562886975804606695795325149786977197371343084}{4917898100885742399944802694433845139896854895128639487275} a^{7} - \frac{993310711906761838224550749340953159344893404543904447678}{4917898100885742399944802694433845139896854895128639487275} a^{6} - \frac{54673844744308338794444556725377341021768781474220070824}{140511374311021211426994362698109861139910139860818271065} a^{5} - \frac{60465135497011043244135027211865611470112793743848759642}{1639299366961914133314934231477948379965618298376213162425} a^{4} + \frac{475476430081054564034948881321451660696762587584103915849}{983579620177148479988960538886769027979370979025727897455} a^{3} + \frac{335826326325020835326028607512641126178210988560386843807}{702556871555106057134971813490549305699550699304091355325} a^{2} - \frac{31613629976209397373739362709388981394876976557173662213}{234185623851702019044990604496849768566516899768030451775} a + \frac{5644233101164926252149832051250771553958178715343304376}{17135533452563562369145653987574373309745139007416862325}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39270459555.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.403137.1, 10.2.89873250745257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 79 | Data not computed | ||||||