Normalized defining polynomial
\( x^{20} - 9 x^{19} + 51 x^{18} - 241 x^{17} + 347 x^{16} + 2310 x^{15} - 14871 x^{14} + 55324 x^{13} - 155288 x^{12} + 351923 x^{11} - 783138 x^{10} + 1516694 x^{9} - 1932499 x^{8} + 1616791 x^{7} - 1858545 x^{6} + 3229947 x^{5} - 3603968 x^{4} + 2067065 x^{3} - 523404 x^{2} + 32886 x - 1687 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4077952207063102833961955803138980864=2^{10}\cdot 3^{24}\cdot 7^{6}\cdot 79^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{646199365763548769731117046851112285098585524679264632780363} a^{19} + \frac{60457259778634742280604139651207423248630114419967364584619}{646199365763548769731117046851112285098585524679264632780363} a^{18} - \frac{29543214970156599522517821820669758744073341875127971399673}{215399788587849589910372348950370761699528508226421544260121} a^{17} + \frac{49473138484717243694063334357307342071212948941449490896605}{646199365763548769731117046851112285098585524679264632780363} a^{16} - \frac{2368467461442554485953609681182208383540672068182487042724}{646199365763548769731117046851112285098585524679264632780363} a^{15} - \frac{134931485416840535408762990181689657783059944056455488685952}{646199365763548769731117046851112285098585524679264632780363} a^{14} + \frac{4655101999657466055271324432453003861707749137827158366773}{646199365763548769731117046851112285098585524679264632780363} a^{13} + \frac{2013476659135859491241600232827414704128580657881749649424}{215399788587849589910372348950370761699528508226421544260121} a^{12} + \frac{213742274638579962918222202026746161041221158007592486905723}{646199365763548769731117046851112285098585524679264632780363} a^{11} - \frac{214968291700625745633714964240511697778007084218440398521043}{646199365763548769731117046851112285098585524679264632780363} a^{10} + \frac{311449118692663720734357088197195012048036255988036430779930}{646199365763548769731117046851112285098585524679264632780363} a^{9} + \frac{18141106484431238451499182196096833964246576804067066625322}{215399788587849589910372348950370761699528508226421544260121} a^{8} + \frac{196615022909093257108284734284523813800709213738316760560116}{646199365763548769731117046851112285098585524679264632780363} a^{7} + \frac{248378458167492349130705993369404318781588183727767184817135}{646199365763548769731117046851112285098585524679264632780363} a^{6} + \frac{21362738496067060395107017149562716107849072695049926487996}{646199365763548769731117046851112285098585524679264632780363} a^{5} - \frac{322950155158975990744415457171629323577103722080236002849311}{646199365763548769731117046851112285098585524679264632780363} a^{4} - \frac{19472765992185493205695641663731523745276919956167344174785}{215399788587849589910372348950370761699528508226421544260121} a^{3} + \frac{16785691032918182383483905732605847511719336711780501561209}{646199365763548769731117046851112285098585524679264632780363} a^{2} - \frac{322323176727718299917743421326408150535666752658826159213178}{646199365763548769731117046851112285098585524679264632780363} a + \frac{46347785671305174977458079308152023704899539994070021502476}{215399788587849589910372348950370761699528508226421544260121}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44944920182.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.403137.1, 10.2.89873250745257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 79 | Data not computed | ||||||